Spin Polarized Electrons of Low Energy And Magnetism 1994

  • H. C. Siegmann
Part of the NATO ASI Series book series (NSSB, volume 345)


The spin of the electron and its leading rôle in establishing the phenomenon of magnetism became a clear concept in the course of the development of quantum mechanics in the first half of our century. In the second half, one was concerned to what extent quantum theory could explain solid state phenomena, and the main focus was the development of electron spectroscopy on solids and their surfaces. The analysis of the spin polarization of the electrons makes it possible to distinguish spin up from spin down states in the solid even when they are degenerate in energy. Therefore, spin polarized electron spectroscopy became a major topic in magnetism and generated the new field of surface and two-dimensional magnetism1,2. Recently, the following discoveries as well as realisations of older ideas have produced a wealth of new opportunities for basic research and applications of magnetism.


Spin Polarization Ferromagnetic Layer Spin Moment Transport Polarization Spin Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Donath, Surf. Sci. 287/288 (1993) 722ADSCrossRefGoogle Scholar
  2. 2.
    H.C. Siegmann, J. Phys.: Condensed Matter 4 (1992) 8375ADSCrossRefGoogle Scholar
  3. 3.
    T. Maruyama, E.L. Garwin, R. Prepost, and G.H. Zapalac, Phys. Rev. B 46 (1992) 4261 and ref. citedADSCrossRefGoogle Scholar
  4. 4.
    Proc. of the Workshop on Photocathodes for Polarized Electron Sources for Accelerators, 1993, Stanford Linear Accelerator Center, Stanford, Ca.Google Scholar
  5. 5.
    H. Pinkvos, H. Poppa, E. Bauer, and J. Hurst, Ultramicroscopy 47 (1992) 339CrossRefGoogle Scholar
  6. 6.
    C.H. Back, C. Wiirsch, D. Pescia, to be publ. in Z. Physik Condens. MatterGoogle Scholar
  7. 7.
    S. Blügel, Phys. Rev. Lett 68 (1992) 851 and ref.ADSCrossRefGoogle Scholar
  8. 8.
    A.J. Cox, J.G. Londerback, S.E. Apsel, and L.A. Bloomfield, Phys. Rev. B 49 (1994) 12295 and ref.ADSCrossRefGoogle Scholar
  9. 9.
    C. Turtur and G. Bayreuther, Phys. Rev. Lett 72 (1994) 1557ADSCrossRefGoogle Scholar
  10. 10.
    R. Coehorn, Europhys. News 24 (1993) 43Google Scholar
  11. 11.
    Bruce A. C Gumey et al., Phys. Rev. Lett. 71 (1993) 4023CrossRefGoogle Scholar
  12. 12.
    M.P. Sean and W.A. Dench, Surf. Interface Anal. 1 (1979) 2CrossRefGoogle Scholar
  13. 13.
    D.R. Penn, S.P. Apell, and S. M. Girvin, Phys. Rev. B 32 (1985) 7753ADSCrossRefGoogle Scholar
  14. 14.
    H. Tang, T.G. Walker, H. Hopster, D.P. Pappas, D. Weiler, J.C. Scott, Phys. Rev. B 47 (1993) 5047ADSCrossRefGoogle Scholar
  15. 15.
    R. Allenspach, M. Taborelli, and M. Landolt, Phys. Rev. Lett. 55 (1985) 2599ADSCrossRefGoogle Scholar
  16. 16.
    J. Glazer and E. Tosatti, Solid State Comm. 52 (1984) 11507CrossRefGoogle Scholar
  17. 17.
    D.L. Abraham and H. Hopster, Phys. Rev. Lett. 62 (1989) 1157ADSCrossRefGoogle Scholar
  18. 18.
    D. Venus and J. Kirschner, Phys. Rev. B 37 (1988) 2199ADSCrossRefGoogle Scholar
  19. 19.
    M.P. Gokhale and D.L. Mills, Phys. Rev. Lett 66 (1991) 2251ADSCrossRefGoogle Scholar
  20. 20.
    G. Schönhense and H.C. Siegmann, Ann. Phys. 2 (1993) 498 and ref.Google Scholar
  21. 21.
    D.P. Pappas, K.P. Kämper, B.P. Miller, H. Hopster, D.E. Fowler, C.R. Brundle, A.C. Luntz, and Z.-X. Shen, Phys. Rev. Lett 66 (1991) 504ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Gröbli, D. Guarisco, S. Frank, and F. Meier, to appear in Phys. Rev. B, 1994Google Scholar
  23. 23.
    Y. Lasailly, H.-J. Drouhin, A.J. van der Sluijs, G. Lampel, and C. Marlière, Poster Session this meeting and preprintGoogle Scholar
  24. 24.
    R.J. Celotta, J. Unguris, and D.T. Pierce, J. Appl. Phys. 75 (1994) 6452ADSCrossRefGoogle Scholar
  25. 25.
    F. Sirotti, G. Panaccione, and G. Rossi, subm. to J. de PhysiqueGoogle Scholar
  26. 26.
    H.C. Siegmann, Physics Reports 17 C (1975) 39ADSCrossRefGoogle Scholar
  27. 27.
    W. Eib and S.F. Alvarado, Phys. Rev. Lett. 37 (1976) 444ADSCrossRefGoogle Scholar
  28. 28.
    G. Busch, M. Campagna, D.T. Pierce, and H.C. Siegmann, Phys. Rev. Lett. 28 (1972) 611ADSCrossRefGoogle Scholar
  29. 29.
    J.C. Gröbli, A. Kündig, F. Meier, and H.C. Siegmann, to appear in Physica BGoogle Scholar
  30. 30.
    M. Taborelli, R. Allenspach, G. Boffa, and M. Landolt, Phys. Rev. Lett. 56 (1986) 2869, and R. Allenspach, Diss. ETH Nr. 7952, Zürich 1985ADSCrossRefGoogle Scholar
  31. 31.
    O.M. Paul, Diss. ETH Zürich Nr. 9210, 1990Google Scholar
  32. 32.
    F. Meier, G.L. Bona, and S. Hüfner, Phys. Rev. Lett. 52 (1984) 1152ADSCrossRefGoogle Scholar
  33. 33.
    J.S. Helman and H.C. Siegmann, Solid State Commun 13 (1973) 891ADSCrossRefGoogle Scholar
  34. 34.
    P. Fuchs, K. Totland, and M. Landolt, to be published, and K. Totland, Diss. ETH Nr. 10481, Zürich 1994Google Scholar
  35. 35.
    M. Donath, D. Scholl, H.C. Siegmànn, and E. Kay, Appl. Phys. A 52 (1991) 206ADSCrossRefGoogle Scholar
  36. 36.
    O. Paul, S. Toscano, K. Totland, and M. Landolt, Surf. Sci. 251/252 (1991) 27ADSCrossRefGoogle Scholar
  37. 37.
    K. Totland, P. Fuchs, J.C. Gröbli, and M. Landolt, Phys. Rev. Lett. 70 (1993) 2487ADSCrossRefGoogle Scholar
  38. 38.
    H.C. Siegmann, Surf. Sci. 307–309 (1994) 1076ADSCrossRefGoogle Scholar
  39. 39.
    H.C. Siegmann, J. of El. Spectroscopy and Rel. Phenomena 68 (1994) 505CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • H. C. Siegmann
    • 1
    • 2
  1. 1.Stanford Linear Accelerator CenterStanfordUSA
  2. 2.Swiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations