Comparison of Accuracy of Alternative Models for Biochemical Pathways

  • Eberhard O. Voit
Part of the NATO ASI Series book series (NSSA, volume 190)


During the past two decades, three new theories have been developed for the representation and analysis of biochemical phenomena: Biochemical Systems Theory, originated by Savageau (1969ab, 1970, 1971, 1972), Metabolic Control Theory, originated by Kacser & Bums (1973) and Heinrich and Rapoport (1974, 1975), and the theory originated by Crabtree & Newsholme (1978, 1985, 1987), which I shall call Flux-Oriented Theory (cf. Sorribas & Savageau, 1989b). All three theories have the ultimate goal to yield insight into the function and regulation of biochemical systems. In particular, they all intend to answer the question of how component and global properties are related to each other or, in other words, how the function of an integrated biochemical system can be deduced from kinetic observations of the component parts. Comparisons on the basis of the underlying theory (Savageau, Voit & Irvine, 1987ab), of results from application to the same systems (Sorribas & Savageau, 1989abc), and of the specific operations involved in the execution of an analysis (as described by Savageau in Chapter 4 of this book) all have shown that these three theories are related variants based on the Power-Law Formalism, even though some of the specific aims and applications of each approach may appear to be different.


Linear Representation Operating Point Biochemical Pathway Error Tolerance Logarithmic Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cornish-Bowden, A. (1989) J. Theor. Biot. 136, 365–377CrossRefGoogle Scholar
  2. Crabtree, B. and Newsholme, E. A. (1978) Eur. J. Biochem. 89, 19–22PubMedCrossRefGoogle Scholar
  3. Crabtree, B. and Newsholme, E. A. (1985) Curr. Top. Cell. Reg. 52, 21–76Google Scholar
  4. Crabtree, B. and Newsholme, E. A. (1987) Biochem. J. 247, 113–120PubMedGoogle Scholar
  5. Geigy, J. R. (1960) Documenta Geigy Wissenschaftliche Tabellen, J.R. Geigy S.A., BasleGoogle Scholar
  6. Heinrich, R. and Rapoport, T. (1974) Eur. J. Biochem., 42, 89–95PubMedCrossRefGoogle Scholar
  7. Heinrich, R. and Rapoport, T. (1975) BioSystems 7, 130–136Google Scholar
  8. Kacser, H. and Burns, J. A. (1973) Symp. Soc. Exp. Biol. 27, 65–104PubMedGoogle Scholar
  9. Savageau, M. A. (1969 a) J. Theor. Biol. 25,365–369Google Scholar
  10. Savageau, M. A. (19696) J. Theor. Biol. 25, 370–379Google Scholar
  11. Savageau, M. A. (1970) J. Theor. Biol. 26, 215–226PubMedCrossRefGoogle Scholar
  12. Savageau, M. A. (1971) Arch. Biochem. Biophys. 145,612–621 Savageau, M. A. (1972) Curr. Top. Cell Reg. 6,63–130Google Scholar
  13. Savageau, M. A. (1975) J. Mol. Evol. 5, 199–222PubMedCrossRefGoogle Scholar
  14. Savageau, M. A. (1976) Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MassachusettsGoogle Scholar
  15. Savageau, M. A. (1979) Proc. Nat. Acad. Sci. 76, 5413–5417PubMedCrossRefGoogle Scholar
  16. Savageau, M. A., Voit, E. O. and Irvine, D. H. (1987 a) Math. Biosci. 86,127–145Google Scholar
  17. Savageau, M. A., Voit, E. O. and Irvine, D. H. (1987 b) Math. Biosci. 86,147–169Google Scholar
  18. Sorribas, A. and Savageau, M. A. (1989a) Math. Biosci. 94, 161–193PubMedCrossRefGoogle Scholar
  19. Sorribas, A. and Savageau, M. A. (1989b) Math. Biosci. 94, 195–238PubMedCrossRefGoogle Scholar
  20. Sorribas, A. and Savageau, M. A. (1989 c) Math. Biosci. 94,239–69Google Scholar
  21. Voit, E. O. and Savageau, M. A. (1987) Biochemistry 26, 6869–6880PubMedCrossRefGoogle Scholar
  22. Wallach, J. (1978) Interpretation of Diagnostic Tests, Little, Brown and Company, BostonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Eberhard O. Voit
    • 1
  1. 1.Department of BiometryMedical University of South CarolinaCharlestonUSA

Personalised recommendations