Molecular Adaptation in the Lactose Operon

  • Antony M. Dean
Part of the NATO ASI Series book series (NSSA, volume 190)


Modern studies of molecular evolution are dominated by sequence comparisons among homologous genes of present day species. This approach, which enables the construction of gene phylogenies that reflect the historical relations among species, has been crowned with the spectacular discovery of a new kingdom — the archaebacteria (Woese, 1987).


Natural Selection Relative Fitness Periplasmic Space Control Coefficient Exponential Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dean, A. M. (1989) Genetics, in pressGoogle Scholar
  2. Dean, A. M. & Dykhuizen, D. E. (1990) in Principles of Metabolic Control, (Westerhoff, H. V., ed.) Plenum, New YorkGoogle Scholar
  3. Dean, A. M., Dykhuizen, D. E. & Hartl, D. L. (1986) Genetical Research 48, 1–8PubMedCrossRefGoogle Scholar
  4. Dean, A. M., Dykhuizen, D. E. & Hartl, D. L. (1988a) Mol. Biol. Evol. 5, 469–485PubMedGoogle Scholar
  5. Dean, A. M., Dykhuizen, D. E. & Hartl, D. L. ( 1988 b) in Proceedings of the Second International Conference on Quantitative Genetics (Weir, B. S., Eisen, E. J., Goodman, M. M. & Namkoong, G., eds.), pp. 536–548, Sinauer Associates Inc., Sunderland, MassachusettsGoogle Scholar
  6. Dykhuizen, D. E. & Hartl, D. L. (1978) J. Bacteriol. 135, 876–882PubMedGoogle Scholar
  7. Dykhuizen, D. E. & Hartl, D. L. (1983) Microbiol. Reviews 47, 1050–1069Google Scholar
  8. Dykhuizen, D. E., Dean, A. M. & Hartl, D. L. (1987) Genetics 114, 25–31Google Scholar
  9. Ghazi, A., Therisod, H. & Shechter, E. (1983) J. Bacteriol. 154, 92–103PubMedGoogle Scholar
  10. Hall, B. G. (1984) in Microorganisms as Model Systems for Studying Evolution (Mortlock, R.P., ed.), Plenum, New YorkGoogle Scholar
  11. Hart!, D. L., Dykhuizen, E.D. & Dean, A. M. (1985) Genetics 111, 655–674Google Scholar
  12. Huber, R. E., Kurz, G. & Wallenfels, K. (1976) Biochemistry 15, 1994–2001PubMedCrossRefGoogle Scholar
  13. Kacser, H. & Bums, J. A. (1973) Symp. Soc. Exp. Biol. 27, 65–104PubMedGoogle Scholar
  14. Kacser, H. & Burns, J. A. (1981) Genetics 97, 639–666PubMedGoogle Scholar
  15. Kimura, M. (1983) The Neutral Theory of Molecular Evolution, Cambridge University Press, New YorkCrossRefGoogle Scholar
  16. Monod, J. (1942) Recherches sur la Croissance des Cultures Bactériennes, Hermann, ParisGoogle Scholar
  17. Nikaido, H. & Vaara, M. (1987) in Escherichia coli and Salmonella typhimurium, Vol. 1, (Neidhart, F. C., ed.), pp. 7–22, American Soc. Microbiol., Washington D.C.Google Scholar
  18. Wilson, A. C., Carlson, S. S. & White, T. J. (1977) Ann. Rev. Biochem. 46, 573–639PubMedCrossRefGoogle Scholar
  19. Wilson, D. M., Putzrath, R. M. & Wilson, T. H. (1981) Biochim. Biophys. Acta 649, 377–384PubMedCrossRefGoogle Scholar
  20. Winkler, H. H. & Wilson, T. H. (1966) J. Biol. Chem. 10, 2200–2211Google Scholar
  21. Woese, C. R. (1987) Microbiol. Rev. 51, 221–271PubMedGoogle Scholar
  22. Wright, J. K., Reide, I. & Overath, P. (1981) Biochemistry 20, 6404–6415PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Antony M. Dean
    • 1
  1. 1.Department of BiochemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations