Temporal Aspects of the Control of Metabolic Processes

  • Luis Acerenza
Part of the NATO ASI Series book series (NSSA, volume 190)


A metabolic system can be defined as composed of metabolites that are interconverted by enzyme reactions. The change of each metabolite concentration with time (dS i /dt) depends on the balance between the rates v j of production and consumption of the metabolite:
$$\frac{{d{S_i}}}{{dt}} = \sum\limits_j {{n_{ij}}{v_j}} ,i = 1, \ldots ,m$$
in which n ij is the stoicheiometric coefficient of S i in the reaction j and m is the number of metabolites.


Lyapunov Exponent Enzyme Concentration Metabolite Concentration Temporal Aspect Metabolic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acerenza, L., Sauro, H. M., Kacser, H. (1989) J. Theor. Biol. 137, 423–444PubMedCrossRefGoogle Scholar
  2. Bums, J. A., Cornish-Bowden, A., Groen, A. K., Heinrich, R., Kacser, H., Porteous, J. W., Rapoport, S. M., Rapoport, T. A., Stucki, J. W., Tager, J. M., Wanders, R. J. A., Westerhoff, H. V. (1985) Trends Biochem. Sci. 10, 16Google Scholar
  3. Cornish-Bowden, A. (1979) Fundamentals of Enzyme Kinetics, pp. 49–51, Butterworths, London and BostonGoogle Scholar
  4. Decroly, O., Goldbeter, A. (1982) Proc. Natl. Acad. Sci. USA 79, 6917–6921PubMedCrossRefGoogle Scholar
  5. Easterby, J. S. (1981) Biochem. J. 199, 155–161PubMedGoogle Scholar
  6. Heinrich, R., Rapoport, T. A. (1974) Eur. J. Biochem. 42, 89–95PubMedCrossRefGoogle Scholar
  7. Heinrich, R., Rapoport, T. A. (1975) BioSystems 7, 130–136PubMedCrossRefGoogle Scholar
  8. Higgins, J. (1967) Ind. Eng. Chem. 59, 19–62CrossRefGoogle Scholar
  9. Higgins, J., Frenkel, R., Hulme, E., Lucas, A., Rangazas, G. (1973) in Biological and Biochemical Oscillators (Chance, B., Pye, E. K., Ghosh, A. M., Hess, B., eds.), pp. 127–175, Academic Press, New YorkGoogle Scholar
  10. Kacser, H., Burns, J. A. (1973) Symp. Soc. Exp. Biol. 27, 65–104PubMedGoogle Scholar
  11. Kohn, M. C., Whitley, L. M., Garfinkel, D. (1979) J. Theor. Biol. 76, 437–452CrossRefGoogle Scholar
  12. Kohn, M. C., Chiang, E. (1982) J. Theor. Biol. 98, 109–126PubMedCrossRefGoogle Scholar
  13. Markus, M., Kuschmitz, D., Hess, B. (1984) FEBS Leu. 172, 235–238CrossRefGoogle Scholar
  14. Meléndez-Hevia, E., Torres, N. V., Sicilia, J., Kacser, H. (1990) Biochem. J. 265, 195–202PubMedGoogle Scholar
  15. Mizraji, E., Acerenza, L., Hernandez, J. (1988) BioSystems 22, 11–17PubMedCrossRefGoogle Scholar
  16. Pachot, P., Demongeot, J. (1987) in Contrôle du Métabolisme Cellulaire (Mazat, J.-P., Reder, C., eds. ), pp. 121–137Google Scholar
  17. Sauro, H. M. (1986) PhD Thesis, Oxford PolytechnicGoogle Scholar
  18. Selwyn, M. J. (1965) Biochim. Biophys. Acta 105, 193–195PubMedCrossRefGoogle Scholar
  19. Torres, N. V., Souto, R., Meléndez-Hevia, E. (1989) Biochem. J. 260, 763–769PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Luis Acerenza
    • 1
  1. 1.Department of GeneticsUniversity of EdinburghEdinburghUK

Personalised recommendations