Sensing of Chemical Signals by Enzymes

  • Jacques Ricard
  • Jean Buc
  • Nicolas Kellershohn
  • Jean-Michel Soulié
Chapter
Part of the NATO ASI Series book series (NSSA, volume 190)

Abstract

Living systems are able to sense the intensity of chemical signals originating from the external milieu and are able to detect whether this intensity increases or decreases. Chemotaxis of bacteria represents a striking example of these sensory properties defined at a rather simple level (Koshland, l979, 1980ab, 1981). Bound enzyme systems in which diffusion is a limiting process may also display these sensory properties (Engasser & Horvath, 1974, 1976; Ricard, 1987). This implies that the system possesses a memory and that its response is different depending on whether the concentration of a ligand increases or decreases. In other words the response of the system is sensitive to its history. Nucleic acids may display metastable secondary structures upon their titration and therefore may exhibit hysteresis effects (Revzin et al., 1973, Neumann, 1973, Schneider, 1976).

Keywords

Chemical Signal Sensory Property Ligand Concentration Progress Curve Conformational Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cornish-Bowden, A., Cardenas, M. L. (1987) J. Theor. Biol. 124, 1–23PubMedCrossRefGoogle Scholar
  2. Engasser, J. M., Horvath, C. (1974) Biochemistry 13, 3855–3859PubMedCrossRefGoogle Scholar
  3. Engasser, J. M., Horvath, C. (1976) in Applied Biochemistry and Bioengineering (Wingard, L. B., Katchalski-Katzir, E., Goldstein, L. eds.), Vol. 1, pp. 127–220, Academic Press, New YorkGoogle Scholar
  4. Koshland, D. E., Jr. (1979) Physiol. Res. 59, 812–862Google Scholar
  5. Koshland, D. E., Jr. (1980) Bacterial Chemotaxis as a Model Behavioral System, Raven Press, New YorkGoogle Scholar
  6. Koshland, D. E., Jr. (1980) Annu. Rev. Neurosci. 3, 43–75PubMedCrossRefGoogle Scholar
  7. Koshland, D. E., Jr. (1981) Annu. Rev. Biochem. 50, 765–782PubMedCrossRefGoogle Scholar
  8. Neet, K. E., Ainslie, G. R., Jr. (1980) Methods Enzymol. 64, 192–226PubMedCrossRefGoogle Scholar
  9. Neumann, E. (1973) Angew. Chem. Internat. Edit. 12, 356–369CrossRefGoogle Scholar
  10. Revzin, A., Neumann, E., Katchalski, A. (1973) J. Mol. Biol. 79, 95–114PubMedCrossRefGoogle Scholar
  11. Ricard, J., Meunier, J.-C., Buc, J. (1974) Eur. J. Biochem. 49, 195–208PubMedCrossRefGoogle Scholar
  12. Ricard, J. (1987) J. Theor. Biol. 128, 253–278CrossRefGoogle Scholar
  13. Ricard, J., Buc, J. (1988) Eur. J. Biochem. 176, 103–109PubMedCrossRefGoogle Scholar
  14. Ricard, J., Soulié, J.-M., Buc, J., Kellershohn, N. (1988) in Systems with Learning and Memory Abilities (Delacour, J., Levy, J. C. S. eds.), pp. 261–275, Elsevier, North HollandGoogle Scholar
  15. Schneider, F. W. (1976) Biopolymers 15, 1–14PubMedCrossRefGoogle Scholar
  16. Soulié, J. M., Rivière, M., Ricard, J. (1988) Eur. J. Biochem. 176, 111–117PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Jacques Ricard
    • 1
  • Jean Buc
    • 1
  • Nicolas Kellershohn
    • 1
  • Jean-Michel Soulié
    • 1
  1. 1.Centre de Biochimie et de Biologie MoléculaireCentre National de la Recherche ScientifiqueMarseilleFrance

Personalised recommendations