Properties Needed for the Enzymes of an Interconvertible Cascade to Generate a Highly Sensitive Response

  • María Luz Cárdenas
  • Athel Cornish-Bowden
Part of the NATO ASI Series book series (NSSA, volume 190)


One of the important problems in biology is how to produce a sufficiently sensitive response to a signal. An essential point in metabolic control is thus the sensitivity in the response of a pathway to an effector. Consequently the understanding of the mechanisms that allow a high degree of sensitivity should constitute a major goal of any theory of metabolic control. Cooperativity in the response of an enzyme to an effector is undoubtedly an important mechanism, but it appears insufficient as the degree of cooperativity of enzymes is never very high (Hill coefficients less than 4 in nearly all cases). Thus even an effector that acts on a step with a flux control coefficient close to unity would only be able to switch on and off the pathway flux (say between 10% and 90% of full activity) if its concentration increases at least three-fold. Even a Hill coefficient as high as 6, rarely seen in nature, would only lower this ratio to two-fold. Furthermore, as flux control coefficients in reality are usually less than unity, the sensitivity of the pathway to the effector is decreased accordingly.


Protein Phosphatase Myosin Light Chain Okadaic Acid Inhibition Constant Hill Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bialojan, C. & Takai, A. (1988) Biochem. J. 256, 283–290PubMedGoogle Scholar
  2. Bialojan, C., Ruegg, J. C., & Takai, A. (1988) J. Physiol. (Lond.) 398, 81–95Google Scholar
  3. Brading, A. F. (1981) in Smooth Muscle: an Assessment of Current Knowledge (Btilbring, E., Brading, A. F., Jones, A. W. & Tornita, T., eds.) pp. 65–92, Edward Arnold, LondonGoogle Scholar
  4. Burns, J. A., Comish-Bowden, A., Groen, A. K., Heinrich, R., Kacser, H., Porteous, J. W., RapoportGoogle Scholar
  5. S.M., Rapoport, T. A., Stucki, J. W., Tager, J.M., Wanders, R. J. A. & Westerhoff, H. V. (1985)Trends Biochem. Sci. 10,16Google Scholar
  6. Cardenas, M. L. & Cornish-Bowden, A. (1989) Biochem. J. 257, 339–345PubMedGoogle Scholar
  7. Chock, P. B. & Stadtman, E. R. (1977) Proc. Natl. Acad. Sci. USA 74, 2766–2770PubMedCrossRefGoogle Scholar
  8. Chock, P. B., Rhee, S. G. & Stadtman, E. R. (1980) Annu. Rev. Biochem. 49, 813–843PubMedCrossRefGoogle Scholar
  9. Cohen, P. (1982) Nature 296, 613–620PubMedCrossRefGoogle Scholar
  10. Cornish-Bowden, A. (1986) FEBS Leu. 203, 3–6CrossRefGoogle Scholar
  11. Fell, D. A. & Small, J. R. (1986) Biochem Soc. Trans. 14, 623–624Google Scholar
  12. Goldbeter, A. & Koshland, D. E., Jr. (1981) Proc. Natl. Acad. Sci. USA 78, 6840–6844PubMedCrossRefGoogle Scholar
  13. Goldbeter, A. & Koshland, D. E., Jr. (1982) Q. Rev. Biophys. 15, 555–591PubMedCrossRefGoogle Scholar
  14. Goldbeter, A. & Koshland, D. E., Jr. (1984) J. Biol. Chem. 259, 14441–14447PubMedGoogle Scholar
  15. Goldbeter, A. & Koshland, D. E., Jr. (1987) J. Biol. Chem. 262, 4460–4471PubMedGoogle Scholar
  16. Kacser, H. & Porteous, J. W. (1987) Trends Biochem. Sci. 12, 5–14CrossRefGoogle Scholar
  17. Kodama, I., Kondo, N. & Shibata, S. (1986) J. Physiol. (Lond.) 378, 359–373Google Scholar
  18. Haystead, T. A. J., Sim, A. T. R., Carling, D., Honnor, R. C., Tsukitani, Y., Cohen., P. & Hardie, D. G. (1989) Nature 337, 78–81PubMedCrossRefGoogle Scholar
  19. Murata, M., Shimatani, M., Sugitani, H., Oshima, Y. & Yasumoto. T. (1982) Bull. Jpn. Soc. Sci. Fish. 48, 549–552CrossRefGoogle Scholar
  20. Niemeyer, H. & Cardenas, M. L. (1985) Arch. Biol. Med. Exp. 18, 331–358PubMedGoogle Scholar
  21. Pettit, F. H., Pelley, J. W. & Reed, L. J. (1975) Biochem. Biophys. Res. Comm. 65, 575–582PubMedCrossRefGoogle Scholar
  22. Segal, A., Brown, M. A. & Stadtman, E. R. (1974) Arch. Biochem. Biophys. 161, 319–327CrossRefGoogle Scholar
  23. Shibata, S., Ishida, Y., Kitano, H., Ohizumi, Y., Habon, J., Tsukitani, Y. & Kikuchi, H. (1982) J. Pharmacol. Exp. Ther. 223, 135–143PubMedGoogle Scholar
  24. Stadtman, E. R. (1970) in The Enzymes (3rd edn., Boyer, P. D., ed.), vol. 1, pp 397–459. Academic Press, New YorkGoogle Scholar
  25. Stadtman, E. R. & Chock, P. B. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 2761–2766PubMedCrossRefGoogle Scholar
  26. Stadtman, E. R. & Chock, P. B. (1978) Curr. Topics Cell. Regul. 13, 53–93Google Scholar
  27. Suganuma, M., Fujiki, H., Suguri, H., Yoshizawa, S. Hirota, M., Nakayasu, M., Ojika, M., Wakamatsu, K. & Yamada, K. & Sugimura, T. (1988) Proc. Natl. Acad. Sci. USA 85, 1768 1771Google Scholar
  28. Tachibana, Y., Scheuer, P. J., Tsukitani, Y., Kikuchi, H., Van Engen, D., Clardy, J., Giopichand, Y. & Schmitz, F. J. (1981) J. Am. Chem. Soc. 103, 2469–2471CrossRefGoogle Scholar
  29. Takai, A., Bialojan, C., Troschka, M. & Ruegg, J. C. (1987) FEBS Leu. 217, 81–84CrossRefGoogle Scholar
  30. Taketa, K. & Pogell, B. M. (1965) J. Biol. Chem. 240, 651–652PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • María Luz Cárdenas
    • 1
  • Athel Cornish-Bowden
    • 1
  1. 1.Centre de Biochimie et de Biologie MoléculaireCentre National de la Recherche ScientifiqueMarseilleFrance

Personalised recommendations