A Model for the Contribution of Lung Receptors to the Control of Breathing: Positive and Negative Feed-Backs

  • C. P. M. van der Grinten
  • S. C. M. Luijendijk

Abstract

Experiments in dogs in which pulmonary and systemic circulations were controlled separately have shown that minute ventilation (̇VE) increased when the CO2 content of pulmonary arterial blood was increased, while systemic arterial PCO2 was kept constant. Similarly, ̇VE also increased when pulmonary blood flow was increased at constant PCO2. These responses were abolished after bilateral vagal transection10, 20. We present two positive feed-backs which may account for the increases in ̇VE observed in these experiments. Further, a negative feed-back is presented controlling the CO2 related off-switch of inspiration.

Keywords

Pulmonary Blood Flow Inspiratory Activity Pulmonary Stretch Receptor Alveolar Carbon Dioxide Expiratory Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Averill, D.B., W.E. Cameron and A.J. Berger, Monosynaptic excitation of dorsal medullary respiratory neurons by slowly adapting pulmonary stretch receptors. J. Neurophysiol. 52: 771–785 (1984).PubMedGoogle Scholar
  2. 2.
    Averill, D.B., W.E. Cameron and A.J. Berger, Neural elements subserving pulmonary stretch receptor-mediated facilitation of phrenic motoneurons. Brain Res. 346: 378–382 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    Bishop, B., Abdominal muscles and diaphragm activities and cavity pressures in pressure breathing. J. Appl. Physiol. 18: 37–42 (1963).PubMedGoogle Scholar
  4. 4.
    Bishop, B. and H. Bachofen, Comparison of neural control of diaphragm and abdominal muscle activities in the cat. J. Appl. Physiol. 32: 798–805 (1972).PubMedGoogle Scholar
  5. 5.
    Clark, F.J. and C. von Euler, On the regulation of depth and rate of breathing. J. Physiol. 222: 267–295 (1972).PubMedGoogle Scholar
  6. 6.
    Coleridge, H.M., Coleridge, J.C.G. & Banzett, R.B., II. Effect of CO2 on afferent vagal endings in the canine lung. Respir. Physiol. 34: 135–151 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    Cunningham, D.J.C., Howson, M.G., Metias, E.F. & Petersen, E.S., Patterns of breathing in response to alternating patterns of alveolar carbon dioxide pressures in man. J. Physiol. 376: 31–45 (1986).PubMedGoogle Scholar
  8. 8.
    DiMarco, A.F., C. von Euler, J.R. Romaniuk and Y. Yamamoto, Positive feedback facilitation of external intercostal and phrenic inspiratory activity by pulmonary stretch receptors. Acta Physiol. Scand. 113: 375–386 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    Euler, C. von and T. Trippenbach, Excitability changes of the inspiratory ‘off-switch’ mechanism tested by electrical stimulation in the nucleus parabrachialis in the cat. Acta Physiol. Scand. 97: 175–188 (1976).CrossRefGoogle Scholar
  10. 10.
    Green, F.G. and M.I. Sheldon, Ventilatory changes associated with changes in pulmonary blood flow in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 997–1002 (1983).Google Scholar
  11. 11.
    Grinten, C.P.M. van der, W.R. de Vries, S.C.M. Luijendijk, Vagal modification of inspiratory activity during pressure breathing in cats. Europ. Respir. J. 2 Suppl 5: 311S (1989).Google Scholar
  12. 12.
    Grinten C.P.M. van der, W.R. de Vries, S.C.M. Luijendijk, Vagal amplification of phrenic activity at different levels of ventilation in spontaneously breathing cats. Europ. J. Appl. Physiol. 62: 49–55 (1991).CrossRefGoogle Scholar
  13. 13.
    Grinten C.P.M. van der, E. Schoute, W.R. de Vries, S.C.M. Luijendijk, Conventional versus slug CO2 loading and the control of breathing in anaesthetized cats. J. Physiology 445: 487–498 (1992).Google Scholar
  14. 14.
    Henke, K.G., M. Sharratt, D. Pegelow and J.A. Dempsey, Regulation of end-expiratory lung volume during exercise. J. Appl. Physiol. 64: 135–146 (1988)PubMedGoogle Scholar
  15. 15.
    Hering, E., Die Selbststeuerung der Athmung durch den Nervus vagus. Sitzungsber. Akad. Wiss. Wien 57: 672–677 (1868).Google Scholar
  16. 16.
    Luijendijk, S.C.M., Within-breath PCO2 levels in the airways and at the pulmonary stretch receptor sites. J. Appl. Physiol.: Respirat., Environ. Exercise Physiol. 55: 1333–1340 (1983).Google Scholar
  17. 17.
    Martin, J.G. and A. De Troyer, The behavior of the abdominal muscles during inspiratory mechanical loading. Respir. Physiol. 50: 63–73 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    Mustafa, M.E.K.Y. and M.J. Purves, The effect of CO2 upon discharge from slowly adapting stretch receptors in the lungs of rabbits. Respir. Physiol. 16: 197–212 (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    Pack, A.I., R.G. DeLaney and A.P. Fishman, Augmentation of phrenic neural activity by increased rates of lung inflation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 149–161 (1981).Google Scholar
  20. 20.
    Sheldon M.I. and F.G. Green, Evidence for pulmonary CO2 chemosensitivity: effects on ventilation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1192–1197 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • C. P. M. van der Grinten
    • 1
  • S. C. M. Luijendijk
    • 1
  1. 1.Department of PulmonologyUniversity Hospital MaastrichtMaastrichtThe Netherlands

Personalised recommendations