Skip to main content

Introduction: Optimization Hypothesis in the Control of Breathing

  • Chapter
Control of Breathing and Its Modeling Perspective

Abstract

The idea that living organisms may be optimally adapted to their environments owes its roots to Darwinian theory. It is clear that, inasmuch as all life processes are sustained by some form of energy, those organisms that can efficiently procure and exploit the needed energy are likely to enjoy a better chance of survival in a competitive environment. This notion has recently received considerable attention in the study of evolutionary adaptation.1 Although not a universal criterion, the optimality condition may be manifest at many different levels of organization in a variety of ways. For example, optimality of biological functions has been variously implicated in the design of biochemical pathways,2 regulation of plant metabolism,3 control of animal gaits,4 and control of ventricular ejection.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Parker and J. Maynard Smith, Optimality theory in evolutionary biology, Nature 348:27 (1990).

    Article  Google Scholar 

  2. M.A. Savageau, “Biochemical Systems Analysis,” Addison-Wesley, Reading, MA (1976).

    Google Scholar 

  3. D. Cohen and H. Pärnas, An optimal policy for the metabolism of storage materials in unicellular algae, J. Theoret. Biol. 56:1 (1977).

    Article  Google Scholar 

  4. J.R. Merkt, J.E. Peters, and C.R. Taylor, Running cheaply: an adaptation for desert life? Physiologist 33:A61 (1990).

    Google Scholar 

  5. S.M. Yamashiro, J.A. Daubenspeck, and F.M. Bennett, Optimal regulation of left ventricular ejection pattern, Appl. Math. Comput. 5:41 (1979).

    Article  Google Scholar 

  6. F. Rohrer, Physiologie der Atembewegung, in: “Handbuch der normalen und path. Physiologie,” Vol. 2, A.T.J. Bethe et al., eds., Springer, Berlin (1925).

    Google Scholar 

  7. E.J.M. Campbell, E. Agostoni, and J. Newsom Davis, “The Respiratory Muscles: Mechanics and Neural Control,” Saunders, Philadelphia (1970).

    Google Scholar 

  8. M.J. Purves, What do we breathe for? in: “Central Nervous Control Mechanisms in Breathing,” C. von Euler and H. Langercrantz, eds., Pergermon, NY (1979).

    Google Scholar 

  9. F.S. Grodins and S.M. Yamashiro, What is the pattern of breathing regulated for? ibid.

    Google Scholar 

  10. E.R. Weibel, C.R. Taylor, and H. Hoppeler, The concept of symmorphosis: a testable hypothesis of structure-function relationship, Proc. Natl. Acad. Sci. USA 88:10357 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. C.S. Poon, Optimal control of ventilation in hypoxia, hypercapnia and exercise, in: “Modelling and Control of Breathing,” B.J. Whipp and D.M. Wiberg, eds., Elsevier, NY (1983).

    Google Scholar 

  12. C.S. Poon, Optimality principle in respiratory control, Proc. 2nd Am. Control Conf. 2:36 (1983).

    Google Scholar 

  13. C.S. Poon, Ventilatory control in hypercapnia and exercise: optimization hypothesis, J. Appl. Physiol. 62:2447 (1987).

    PubMed  CAS  Google Scholar 

  14. C.S. Poon, S.L. Lin, and O.B. Knudson, Optimization character of inspiratory neural drive, J. Appl. Physiol. 72(5): (1992). (in press)

    Google Scholar 

  15. F.S. Grodins, Analysis of factors concerned in regulation of breathing in exercise, Physiol. Rev. 30:220 (1950).

    PubMed  CAS  Google Scholar 

  16. K. Wasserman, B.J. Whipp, and R. Casaburi, Respiratory control during exercise, in: “Handbook of Physiology: The Respiratory System,” Sect. 3, Vol. II, N.S. Cherniack and J.G. Widdicombe, eds., Am. Physiol. Soc., Bethesda, MD (1986).

    Google Scholar 

  17. D.J.C. Cunningham, P.A. Robbins, and C.B. Wolff, Integration of respiratory responses to changes in alveolar partial pressures of CO2, O2 and in arterial Ph, ibid.

    Google Scholar 

  18. M.K. Younes and J.E. Remmers, Control of tidal volume and respiratory frequency, in: “Regulation of Breathing,” Part I, T.F. Hornbein, ed., Marcel Dekker, NY (1981).

    Google Scholar 

  19. D.W. Richter, D. Ballantyne, and J.E. Remmers, How is the respiratory rhythm generated? News Physiol. Sci. 1:109 (1986).

    Google Scholar 

  20. N.C. Heglund and G.A. Cavagna, Mechanical work, oxygen consumption, and efficiency in isolated frog and rat muscle, Am. J. Physiol. 253:C22 (1987).

    PubMed  CAS  Google Scholar 

  21. D.A. Syme, Passive viscoelastic work of isolated rat, Rattus Norvegicus, diaphragm muscle, J. Physiol. 424:301 (1990).

    PubMed  CAS  Google Scholar 

  22. T.J. Sejnowski, C. Koch, and P.S. Churchland, Computational neuroscience, Science 241:1299 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. S.G. Lisberger and T.A. Pavelko, Brain stem neurons in modified pathways for motor learning in the primate vestibulo-ocular reflex, Science 242:771 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. E.R. Kandel, “A Cell-Biological Approach to Learning,” Grass Lecture Monograph 1, Soc. Neuroscience, Bethesda, MD (1978)

    Google Scholar 

  25. F.L. Eldridge and D.E. Millhorn, Oscillation, gating, and memory in the respiratory control system, in: “Handbook of Physiology,” Sect. 3, Vol. n, N.S. Cherniack and J.G. Widdicombe, eds., Am. Physiol. Soc., Bethesda, MD (1986).

    Google Scholar 

  26. D.E. Millhorn, Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat, J. Physiol. 381:169 (1986).

    PubMed  CAS  Google Scholar 

  27. P.G. Wagner and F.L. Eldridge, Development of short-term potentiation of respiration, Respir. Physiol. 83:129, 1991.

    Article  PubMed  CAS  Google Scholar 

  28. K.L. Magleby, Synaptic transmission, facilitation, augmentation, potentiation, depression, in: “Encyclopedia of Neuroscience,” G. Edelman, ed., Vol. 2, Biekhauser, Boston (1987).

    Google Scholar 

  29. J. Champagnat, M. Denavit-Saubié, K. Grant, and K.F. Shen, Organization of synaptic transmission in the mammalian solitary complex, studied in vitro, J. Physiol. 381:551 (1986).

    PubMed  CAS  Google Scholar 

  30. R.G.M. Morris, Synaptic plasticity, neural architecture and forms of memory, in: “Brain Organisation and Memory,” J.L. McGaugh, N.M. Weinberger, and G. Lynch, eds., Oxford Univ. Press (1990).

    Google Scholar 

  31. J.C. Houk, Control strategies in physiological systems, FASEB J. 2:97 (1988).

    PubMed  CAS  Google Scholar 

  32. C.S. Poon, Optimization behavior of brainstem respiratory neurons: a cerebral neural network model, Biol. Cybern. 66:9 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. J.H. Byrne, Cellular analysis of associative learning, Physiol. Rev. 67:329 (1987).

    PubMed  CAS  Google Scholar 

  34. G.S. Mitchell, M.A. Douse, and K.T. Foley, Receptor interactions in modulating ventilatory activity, Am. J. Physiol. 259:R911 (1990).

    PubMed  CAS  Google Scholar 

  35. T.H. Brown, E.W. Kairiss, C.L. Keenan, Hebbian synapses: biophysical mechanisms and algorithms, Annu. Rev. Neurosci. 13:475 (1990).

    Article  PubMed  CAS  Google Scholar 

  36. D.O. Hebb, “The Organization of Behavior,” Wiley, NY (1949).

    Google Scholar 

  37. M.A. Gluck and R.F. Thompson, Modeling the neural substrates of associative learning and memory: a computational approach, Psych. Rev. 94:176 (1987).

    Article  CAS  Google Scholar 

  38. C.S. Poon, Adaptive neural network that subserves optimal homeostatic control of breathing, Ann. Biomed. Engr., Special issue in honor of Dr. F.S. Grodins (in press).

    Google Scholar 

  39. G.S. Mitchell, C.A. Smith, and J.A. Dempsey, Changes in the ̇V1-̇VCO2 relationship during exercise in goats: possible role of carotid bodies, J. Appl. Physiol. 57:1894 (1984).

    PubMed  CAS  Google Scholar 

  40. C.S. Poon and J.G. Greene, Control of exercise hyperpnea during hypercapnia in humans, J. Appl. Physiol. 59:792 (1985).

    PubMed  CAS  Google Scholar 

  41. G.D. Swanson and P.A. Robbins, Optimal respiratory controller structures, IEEE Trans. Biomed. Engr. BME33:677 (1986).

    Article  Google Scholar 

  42. Y. Oku, G.M. Saidel, T. Chonan, M.D. Altose, and N.S. Cherniack, Sensation and control of breathing: a dynamic model. Ann. Biomed. Engr. 19:251 (1991).

    Article  CAS  Google Scholar 

  43. P.K. Stanton and T.J. Sejnowski, Associative long-term depression in the hippocampus induced by hebbian covariance, Nature 339:215 (1989).

    Article  PubMed  CAS  Google Scholar 

  44. W.S. Yamamoto, Mathematical analysis of the time course of alveolar CO2, J. Appl. Physiol. 15:215 (1960).

    PubMed  CAS  Google Scholar 

  45. C.S. Poon, Potentiation of exercise ventilatory response by airway CO2 and dead space loading, J. Appl. Physiol. (in press).

    Google Scholar 

  46. D.A. Sidney and C.S. Poon, Adaptive behavior in the respiratory chemoreflex response, Proc. 17th Northeast Bioeng. Conf. 17:66 (1991).

    Google Scholar 

  47. T. Poggio, Biophysics of computation, in: “Neuroscience in the Twenty-first Century: New Perspectives and Horizons,” Georgetown Univ. Bicentennial Symp., Washington, DC (1989).

    Google Scholar 

  48. K.J. Åström and B. Wittenmark, “Adaptive Control,” Addison-Wesley, Reading, MA (1989).

    Google Scholar 

  49. I.P. Priban and W.F. Fincham, Self-adaptive control and the respiratory system, Nature 208:339 (1965).

    Article  PubMed  CAS  Google Scholar 

  50. C.D. Swanson, Redundancy structures in respiratory control, in: “Control of Breathing and its Modeling Perspective,” Y. Honda, Y. Miyamoto, K. Konno, and J. Widdicombe, eds. (1990). (this volume)

    Google Scholar 

  51. J. von Neumann, Probabilistic logics and the synthesis of reliable organisms from unreliable components, in: “Automata Studies,” C.E. Shannon and J. McCarthy, eds., Princeton Univ. Press, Princeton, NJ (1956).

    Google Scholar 

  52. F.L. Eldridge, P. Gill-Kumar, and D.E. Millhorn, Input-output relationships of central and peripheral respiratory drives involved in respiration in cats, J. Physiol. London 311:81 (1981).

    PubMed  CAS  Google Scholar 

  53. J.M. Adams and M.L. Severns, Interaction of chemoreceptor effects and its dependence on the intensity of stimuli, J. Appl. Physiol. 52:602 (1982).

    PubMed  CAS  Google Scholar 

  54. D.F. Speck and E.R. Beck, Respiratory rhythmicity after extensive lesions of the dorsal and ventral respiratory groups in the decerebrate cat, Brain Research 482:387 (1989).

    Article  PubMed  CAS  Google Scholar 

  55. J. Oren, C.J.L. Newth, C.E. Hunt, R.T. Brouillette, R.T. Bachand, and D.C. Shannon, Ventilatory effects of almitrine bismesylate in congenital central hypoventilation syndrome, Am. Rev. Respir. Dis. 134:917 (1986).

    PubMed  CAS  Google Scholar 

  56. J.C. Smith, H.H. Ellenberger, K. Ballanyi, D.W. Richter, and J.L. Feldman, Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals, Science 254:726 (1991).

    Article  PubMed  CAS  Google Scholar 

  57. A. Selverston and P. Mazzoni, Flexibility of computational units in invertebrate CPGs, in: “The Computing Neuron,” R. Durbin, C. Miall, and G. Mitchison, eds., Addison-Wesley, Reading, MA (1989).

    Google Scholar 

  58. J.L. Feldman, J.C. Smith, H.H. Ellenberger, C.A. Connelly, G. Liu, J.J. Greer, A.D. Lindsay, and M.R. Otto, Neurogenesis of respiratory rhythm and pattern: emerging concepts, Am. J. Physiol. 259:R879 (1990).

    PubMed  CAS  Google Scholar 

  59. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79:2554 (1982).

    Article  PubMed  CAS  Google Scholar 

  60. W.K. Milsom, Mechanoreceptor modulation of endogenous respiratory rhythms in vertebrates, Am J. Physiol. 259:R898 (1990).

    PubMed  CAS  Google Scholar 

  61. J. Milic-Emili and M.M. Grunstein, Drive and timing components of ventilation, Chest, 70 Suppl.:131 (1976).

    PubMed  CAS  Google Scholar 

  62. W.A. Karczewski and J.R. Romaniuk, Neural control of breathing and central nervous system plasticity, Acta Physiol. Pol. Supl. 20:1 (1980).

    Google Scholar 

  63. M.A. Grippi, A.I. Pack, R.O. Davies, and A.P. Fishman, Adaptation to reflex effects of prolonged lung inflation, J. Appl. Physiol. 58:1360 (1985).

    PubMed  CAS  Google Scholar 

  64. M. Younes, J. Baker, J.E. Remmers, Temporal changes in effectiveness of an inspiratory inhibitory electrical pontine stimulus, J. Appl. Physiol. 62:1502 (1987).

    PubMed  CAS  Google Scholar 

  65. C. Roussos, Ventilatory muscle fatigue governs breathing frequency, Bull. Eur. Physiol. Respir. 20:445 (1984).

    CAS  Google Scholar 

  66. J.A. Neubauer, J.E. Melton, and N.H. Edelman, Modulation of respiration during brain hypoxia, J. Appl. Physiol. 68:441 (1990).

    PubMed  CAS  Google Scholar 

  67. K. Murphy, A. Mier, L. Adams, and A. Guz, Putative cerebral control involvement in the ventilatory response to inhaled CO2 in conscious man, J. Physiol. (London) 420:1 (1990).

    CAS  Google Scholar 

  68. F. Haas, S. Distenfeld, and K. Axen, Effects of perceived musical rhythm on respiratory pattern, J. Appl. Physiol. 61:1185 (1986).

    PubMed  CAS  Google Scholar 

  69. J. Gallego and P. Perruchet, Classical conditioning of ventilatory responses in humans, J. Appl. Physiol. 70:676 (1991).

    PubMed  CAS  Google Scholar 

  70. J. Gallego, J. Ankaoua, M. Lethielleux, B. Chambille, G. Vardon, and C. Jacquemin, Retention of ventilatory pattern learning in normal subjects, J. Appl. Physiol. 61:1 (1986).

    PubMed  CAS  Google Scholar 

  71. M.J. Tobin, M.J. Mador, S.M. Guenther, R.F. Lodato, and M.A. Sackner, Variability of resting drive and timing in healthy subjects, J. Appl. Physiol. 65:309 (1988).

    PubMed  CAS  Google Scholar 

  72. M.P. Sammon and E.N. Bruce, Vagal afferent activity increases dynamical dimension of respiration in rats, J. Appl. Physiol. 70:1748 (1991).

    PubMed  CAS  Google Scholar 

  73. A.L. Goldberger, D.R. Rigney, J. Mietus, E.M. Antman, and S. Greenwald, Nonlinear dynamics in sudden cardiac death syndrome: heart rate oscillations and bifurcations, Experientia 44:983 (1988).

    Article  PubMed  CAS  Google Scholar 

  74. C.A. Skarda and W.J. Freeman, How brains make chaos in order to make sense of the world, Behav. and Brain Sci. 10:161 (1987).

    Article  Google Scholar 

  75. J.A. Diamond, The red flag of optimality, Nature 355:204 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poon, CS. (1992). Introduction: Optimization Hypothesis in the Control of Breathing. In: Honda, Y., Miyamoto, Y., Konno, K., Widdicombe, J.G. (eds) Control of Breathing and Its Modeling Perspective. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9847-0_66

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9847-0_66

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9849-4

  • Online ISBN: 978-1-4757-9847-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics