Introduction: Optimization Hypothesis in the Control of Breathing

  • Chi-Sang Poon


The idea that living organisms may be optimally adapted to their environments owes its roots to Darwinian theory. It is clear that, inasmuch as all life processes are sustained by some form of energy, those organisms that can efficiently procure and exploit the needed energy are likely to enjoy a better chance of survival in a competitive environment. This notion has recently received considerable attention in the study of evolutionary adaptation.1 Although not a universal criterion, the optimality condition may be manifest at many different levels of organization in a variety of ways. For example, optimality of biological functions has been variously implicated in the design of biochemical pathways,2 regulation of plant metabolism,3 control of animal gaits,4 and control of ventricular ejection.5


Respiratory Control Inspiratory Muscle Respiratory Rhythm Ventilatory Pattern Respiratory Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.A. Parker and J. Maynard Smith, Optimality theory in evolutionary biology, Nature 348:27 (1990).CrossRefGoogle Scholar
  2. 2.
    M.A. Savageau, “Biochemical Systems Analysis,” Addison-Wesley, Reading, MA (1976).Google Scholar
  3. 3.
    D. Cohen and H. Pärnas, An optimal policy for the metabolism of storage materials in unicellular algae, J. Theoret. Biol. 56:1 (1977).CrossRefGoogle Scholar
  4. 4.
    J.R. Merkt, J.E. Peters, and C.R. Taylor, Running cheaply: an adaptation for desert life? Physiologist 33:A61 (1990).Google Scholar
  5. 5.
    S.M. Yamashiro, J.A. Daubenspeck, and F.M. Bennett, Optimal regulation of left ventricular ejection pattern, Appl. Math. Comput. 5:41 (1979).CrossRefGoogle Scholar
  6. 6.
    F. Rohrer, Physiologie der Atembewegung, in: “Handbuch der normalen und path. Physiologie,” Vol. 2, A.T.J. Bethe et al., eds., Springer, Berlin (1925).Google Scholar
  7. 7.
    E.J.M. Campbell, E. Agostoni, and J. Newsom Davis, “The Respiratory Muscles: Mechanics and Neural Control,” Saunders, Philadelphia (1970).Google Scholar
  8. 8.
    M.J. Purves, What do we breathe for? in: “Central Nervous Control Mechanisms in Breathing,” C. von Euler and H. Langercrantz, eds., Pergermon, NY (1979).Google Scholar
  9. 9.
    F.S. Grodins and S.M. Yamashiro, What is the pattern of breathing regulated for? ibid. Google Scholar
  10. 10.
    E.R. Weibel, C.R. Taylor, and H. Hoppeler, The concept of symmorphosis: a testable hypothesis of structure-function relationship, Proc. Natl. Acad. Sci. USA 88:10357 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    C.S. Poon, Optimal control of ventilation in hypoxia, hypercapnia and exercise, in: “Modelling and Control of Breathing,” B.J. Whipp and D.M. Wiberg, eds., Elsevier, NY (1983).Google Scholar
  12. 12.
    C.S. Poon, Optimality principle in respiratory control, Proc. 2nd Am. Control Conf. 2:36 (1983).Google Scholar
  13. 13.
    C.S. Poon, Ventilatory control in hypercapnia and exercise: optimization hypothesis, J. Appl. Physiol. 62:2447 (1987).PubMedGoogle Scholar
  14. 14.
    C.S. Poon, S.L. Lin, and O.B. Knudson, Optimization character of inspiratory neural drive, J. Appl. Physiol. 72(5): (1992). (in press)Google Scholar
  15. 15.
    F.S. Grodins, Analysis of factors concerned in regulation of breathing in exercise, Physiol. Rev. 30:220 (1950).PubMedGoogle Scholar
  16. 16.
    K. Wasserman, B.J. Whipp, and R. Casaburi, Respiratory control during exercise, in: “Handbook of Physiology: The Respiratory System,” Sect. 3, Vol. II, N.S. Cherniack and J.G. Widdicombe, eds., Am. Physiol. Soc., Bethesda, MD (1986).Google Scholar
  17. 17.
    D.J.C. Cunningham, P.A. Robbins, and C.B. Wolff, Integration of respiratory responses to changes in alveolar partial pressures of CO2, O2 and in arterial Ph, ibid. Google Scholar
  18. 18.
    M.K. Younes and J.E. Remmers, Control of tidal volume and respiratory frequency, in: “Regulation of Breathing,” Part I, T.F. Hornbein, ed., Marcel Dekker, NY (1981).Google Scholar
  19. 19.
    D.W. Richter, D. Ballantyne, and J.E. Remmers, How is the respiratory rhythm generated? News Physiol. Sci. 1:109 (1986).Google Scholar
  20. 20.
    N.C. Heglund and G.A. Cavagna, Mechanical work, oxygen consumption, and efficiency in isolated frog and rat muscle, Am. J. Physiol. 253:C22 (1987).PubMedGoogle Scholar
  21. 21.
    D.A. Syme, Passive viscoelastic work of isolated rat, Rattus Norvegicus, diaphragm muscle, J. Physiol. 424:301 (1990).PubMedGoogle Scholar
  22. 22.
    T.J. Sejnowski, C. Koch, and P.S. Churchland, Computational neuroscience, Science 241:1299 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    S.G. Lisberger and T.A. Pavelko, Brain stem neurons in modified pathways for motor learning in the primate vestibulo-ocular reflex, Science 242:771 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    E.R. Kandel, “A Cell-Biological Approach to Learning,” Grass Lecture Monograph 1, Soc. Neuroscience, Bethesda, MD (1978)Google Scholar
  25. 25.
    F.L. Eldridge and D.E. Millhorn, Oscillation, gating, and memory in the respiratory control system, in: “Handbook of Physiology,” Sect. 3, Vol. n, N.S. Cherniack and J.G. Widdicombe, eds., Am. Physiol. Soc., Bethesda, MD (1986).Google Scholar
  26. 26.
    D.E. Millhorn, Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat, J. Physiol. 381:169 (1986).PubMedGoogle Scholar
  27. 27.
    P.G. Wagner and F.L. Eldridge, Development of short-term potentiation of respiration, Respir. Physiol. 83:129, 1991.PubMedCrossRefGoogle Scholar
  28. 28.
    K.L. Magleby, Synaptic transmission, facilitation, augmentation, potentiation, depression, in: “Encyclopedia of Neuroscience,” G. Edelman, ed., Vol. 2, Biekhauser, Boston (1987).Google Scholar
  29. 29.
    J. Champagnat, M. Denavit-Saubié, K. Grant, and K.F. Shen, Organization of synaptic transmission in the mammalian solitary complex, studied in vitro, J. Physiol. 381:551 (1986).PubMedGoogle Scholar
  30. 30.
    R.G.M. Morris, Synaptic plasticity, neural architecture and forms of memory, in: “Brain Organisation and Memory,” J.L. McGaugh, N.M. Weinberger, and G. Lynch, eds., Oxford Univ. Press (1990).Google Scholar
  31. 31.
    J.C. Houk, Control strategies in physiological systems, FASEB J. 2:97 (1988).PubMedGoogle Scholar
  32. 32.
    C.S. Poon, Optimization behavior of brainstem respiratory neurons: a cerebral neural network model, Biol. Cybern. 66:9 (1991).PubMedCrossRefGoogle Scholar
  33. 33.
    J.H. Byrne, Cellular analysis of associative learning, Physiol. Rev. 67:329 (1987).PubMedGoogle Scholar
  34. 34.
    G.S. Mitchell, M.A. Douse, and K.T. Foley, Receptor interactions in modulating ventilatory activity, Am. J. Physiol. 259:R911 (1990).PubMedGoogle Scholar
  35. 35.
    T.H. Brown, E.W. Kairiss, C.L. Keenan, Hebbian synapses: biophysical mechanisms and algorithms, Annu. Rev. Neurosci. 13:475 (1990).PubMedCrossRefGoogle Scholar
  36. 36.
    D.O. Hebb, “The Organization of Behavior,” Wiley, NY (1949).Google Scholar
  37. 37.
    M.A. Gluck and R.F. Thompson, Modeling the neural substrates of associative learning and memory: a computational approach, Psych. Rev. 94:176 (1987).CrossRefGoogle Scholar
  38. 38.
    C.S. Poon, Adaptive neural network that subserves optimal homeostatic control of breathing, Ann. Biomed. Engr., Special issue in honor of Dr. F.S. Grodins (in press).Google Scholar
  39. 39.
    G.S. Mitchell, C.A. Smith, and J.A. Dempsey, Changes in the ̇V1-̇VCO2 relationship during exercise in goats: possible role of carotid bodies, J. Appl. Physiol. 57:1894 (1984).PubMedGoogle Scholar
  40. 40.
    C.S. Poon and J.G. Greene, Control of exercise hyperpnea during hypercapnia in humans, J. Appl. Physiol. 59:792 (1985).PubMedGoogle Scholar
  41. 41.
    G.D. Swanson and P.A. Robbins, Optimal respiratory controller structures, IEEE Trans. Biomed. Engr. BME33:677 (1986).CrossRefGoogle Scholar
  42. 42.
    Y. Oku, G.M. Saidel, T. Chonan, M.D. Altose, and N.S. Cherniack, Sensation and control of breathing: a dynamic model. Ann. Biomed. Engr. 19:251 (1991).CrossRefGoogle Scholar
  43. 43.
    P.K. Stanton and T.J. Sejnowski, Associative long-term depression in the hippocampus induced by hebbian covariance, Nature 339:215 (1989).PubMedCrossRefGoogle Scholar
  44. 44.
    W.S. Yamamoto, Mathematical analysis of the time course of alveolar CO2, J. Appl. Physiol. 15:215 (1960).PubMedGoogle Scholar
  45. 45.
    C.S. Poon, Potentiation of exercise ventilatory response by airway CO2 and dead space loading, J. Appl. Physiol. (in press).Google Scholar
  46. 46.
    D.A. Sidney and C.S. Poon, Adaptive behavior in the respiratory chemoreflex response, Proc. 17th Northeast Bioeng. Conf. 17:66 (1991).Google Scholar
  47. 47.
    T. Poggio, Biophysics of computation, in: “Neuroscience in the Twenty-first Century: New Perspectives and Horizons,” Georgetown Univ. Bicentennial Symp., Washington, DC (1989).Google Scholar
  48. 48.
    K.J. Åström and B. Wittenmark, “Adaptive Control,” Addison-Wesley, Reading, MA (1989).Google Scholar
  49. 49.
    I.P. Priban and W.F. Fincham, Self-adaptive control and the respiratory system, Nature 208:339 (1965).PubMedCrossRefGoogle Scholar
  50. 50.
    C.D. Swanson, Redundancy structures in respiratory control, in: “Control of Breathing and its Modeling Perspective,” Y. Honda, Y. Miyamoto, K. Konno, and J. Widdicombe, eds. (1990). (this volume)Google Scholar
  51. 51.
    J. von Neumann, Probabilistic logics and the synthesis of reliable organisms from unreliable components, in: “Automata Studies,” C.E. Shannon and J. McCarthy, eds., Princeton Univ. Press, Princeton, NJ (1956).Google Scholar
  52. 52.
    F.L. Eldridge, P. Gill-Kumar, and D.E. Millhorn, Input-output relationships of central and peripheral respiratory drives involved in respiration in cats, J. Physiol. London 311:81 (1981).PubMedGoogle Scholar
  53. 53.
    J.M. Adams and M.L. Severns, Interaction of chemoreceptor effects and its dependence on the intensity of stimuli, J. Appl. Physiol. 52:602 (1982).PubMedGoogle Scholar
  54. 54.
    D.F. Speck and E.R. Beck, Respiratory rhythmicity after extensive lesions of the dorsal and ventral respiratory groups in the decerebrate cat, Brain Research 482:387 (1989).PubMedCrossRefGoogle Scholar
  55. 55.
    J. Oren, C.J.L. Newth, C.E. Hunt, R.T. Brouillette, R.T. Bachand, and D.C. Shannon, Ventilatory effects of almitrine bismesylate in congenital central hypoventilation syndrome, Am. Rev. Respir. Dis. 134:917 (1986).PubMedGoogle Scholar
  56. 56.
    J.C. Smith, H.H. Ellenberger, K. Ballanyi, D.W. Richter, and J.L. Feldman, Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals, Science 254:726 (1991).PubMedCrossRefGoogle Scholar
  57. 57.
    A. Selverston and P. Mazzoni, Flexibility of computational units in invertebrate CPGs, in: “The Computing Neuron,” R. Durbin, C. Miall, and G. Mitchison, eds., Addison-Wesley, Reading, MA (1989).Google Scholar
  58. 58.
    J.L. Feldman, J.C. Smith, H.H. Ellenberger, C.A. Connelly, G. Liu, J.J. Greer, A.D. Lindsay, and M.R. Otto, Neurogenesis of respiratory rhythm and pattern: emerging concepts, Am. J. Physiol. 259:R879 (1990).PubMedGoogle Scholar
  59. 59.
    J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79:2554 (1982).PubMedCrossRefGoogle Scholar
  60. 60.
    W.K. Milsom, Mechanoreceptor modulation of endogenous respiratory rhythms in vertebrates, Am J. Physiol. 259:R898 (1990).PubMedGoogle Scholar
  61. 61.
    J. Milic-Emili and M.M. Grunstein, Drive and timing components of ventilation, Chest, 70 Suppl.:131 (1976).PubMedGoogle Scholar
  62. 62.
    W.A. Karczewski and J.R. Romaniuk, Neural control of breathing and central nervous system plasticity, Acta Physiol. Pol. Supl. 20:1 (1980).Google Scholar
  63. 63.
    M.A. Grippi, A.I. Pack, R.O. Davies, and A.P. Fishman, Adaptation to reflex effects of prolonged lung inflation, J. Appl. Physiol. 58:1360 (1985).PubMedGoogle Scholar
  64. 64.
    M. Younes, J. Baker, J.E. Remmers, Temporal changes in effectiveness of an inspiratory inhibitory electrical pontine stimulus, J. Appl. Physiol. 62:1502 (1987).PubMedGoogle Scholar
  65. 65.
    C. Roussos, Ventilatory muscle fatigue governs breathing frequency, Bull. Eur. Physiol. Respir. 20:445 (1984).Google Scholar
  66. 66.
    J.A. Neubauer, J.E. Melton, and N.H. Edelman, Modulation of respiration during brain hypoxia, J. Appl. Physiol. 68:441 (1990).PubMedGoogle Scholar
  67. 67.
    K. Murphy, A. Mier, L. Adams, and A. Guz, Putative cerebral control involvement in the ventilatory response to inhaled CO2 in conscious man, J. Physiol. (London) 420:1 (1990).Google Scholar
  68. 68.
    F. Haas, S. Distenfeld, and K. Axen, Effects of perceived musical rhythm on respiratory pattern, J. Appl. Physiol. 61:1185 (1986).PubMedGoogle Scholar
  69. 69.
    J. Gallego and P. Perruchet, Classical conditioning of ventilatory responses in humans, J. Appl. Physiol. 70:676 (1991).PubMedGoogle Scholar
  70. 70.
    J. Gallego, J. Ankaoua, M. Lethielleux, B. Chambille, G. Vardon, and C. Jacquemin, Retention of ventilatory pattern learning in normal subjects, J. Appl. Physiol. 61:1 (1986).PubMedGoogle Scholar
  71. 71.
    M.J. Tobin, M.J. Mador, S.M. Guenther, R.F. Lodato, and M.A. Sackner, Variability of resting drive and timing in healthy subjects, J. Appl. Physiol. 65:309 (1988).PubMedGoogle Scholar
  72. 72.
    M.P. Sammon and E.N. Bruce, Vagal afferent activity increases dynamical dimension of respiration in rats, J. Appl. Physiol. 70:1748 (1991).PubMedGoogle Scholar
  73. 73.
    A.L. Goldberger, D.R. Rigney, J. Mietus, E.M. Antman, and S. Greenwald, Nonlinear dynamics in sudden cardiac death syndrome: heart rate oscillations and bifurcations, Experientia 44:983 (1988).PubMedCrossRefGoogle Scholar
  74. 74.
    C.A. Skarda and W.J. Freeman, How brains make chaos in order to make sense of the world, Behav. and Brain Sci. 10:161 (1987).CrossRefGoogle Scholar
  75. 75.
    J.A. Diamond, The red flag of optimality, Nature 355:204 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Chi-Sang Poon
    • 1
  1. 1.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations