Significance of Excitatory and Inhibitory Neurochemicals in Hypoxic Chemotransmission of the Carotid Body

  • Nanduri R. Prabhakar


Chemoreflexes arising from the carotid body are important for maintaining respiratory and cardiovascular homeostasis during hypoxic environmental stress. Conversion of hypoxic stimulus to action potential encoded signals requires transduction and transmission processes. Type I cells of the glomus tissue are considered to be the initial transducers of hypoxic stimulus. Several studies have examined the mechanisms of chemo-transduction in type I cells.1, 2, 3 Some of the current ideas concerning the transduction are summarized in Figure 1. Whatever may be the transduction mechanism(s), eventually they release neurochemicals) from the glomus cells which are necessary for transmission of the hypoxic stimulus.


Carotid Body Hypoxic Response Glomus Cell Hypoxic Stimulus Carotid Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Acker. PO2 chemoreception in arterial chemoreceptors, Annu. Rev. Physiol. 51:835–844(1989).PubMedCrossRefGoogle Scholar
  2. 2.
    T.J. Biscoe and M.R. Duchen. Monitoring pO2 by the carotid chemoreceptor, News in Physiol. Sci. 5:229–233 (1990).Google Scholar
  3. 3.
    J. Lopez-Barneo, J.R. Lopez-Lopez, J. Urena, and C. Gonzalez. Chemotransduction in the carotid body: K+ current modulated by pO2 in type I chemoreceptor cells, Science. 241:580–582 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    S.J. Fidone and C. Gonzalez. Initiation and control of chemoreceptor activity in the carotid body, in: “Handbook of Physiology-Section 3: The Respiratory System,” Vol. 2, N.S. Chemiack and T.G. Widdicombe, ed., (1986).Google Scholar
  5. 5.
    I.V. Chen, R.D. Yates, and J.T. Hansen. Substance P-like immunoreactivity in rat and cat carotid bodies: light and electron microscopic studies, Histol. Histopathol. 1:203–212(1986).PubMedGoogle Scholar
  6. 6.
    N.R. Prabhakar, S.C. Landis, G.K. Kumar, D.M. Kilpatrick, N.S. Cherniack, S.E. Leeman. Substance P and neurokinin-A in the cat carotid body: localization, exogenous effects and changes in content in response to arterial pO2, Brain Res. 481:205–214 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    G.K. Kumar, M. Runold, R.D. Ghai, N.S. Cherniack and N.R. Prabhakar. Occurrence of neutral endopeptidase activity in the cat carotid body and its significance in chemoreception, Brain Res. 517:341–343 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    D. S. McQueen. Effects of substance P on carotid chemoreceptor activity in cats, J. Physiol (London) 302:31–47 (1980).Google Scholar
  9. 9.
    M. Shirahata. Effects of substance P on the carotid chemoreceptor responses to natural stimuli, in: “Chemoreceptors and Reflexes in Breathing: Cellular and Molecular Aspects,” S. Lahiri, R.E. Foster, R.O. Davies, and A.I. Pack, eds., Oxford University Press, N.Y., pp 139–145 (1989).Google Scholar
  10. 10.
    L. Monti-Bloch and C. Eyzaguirre. Effects of methionine-enkephalin and substance P on the chemosensory discharge of the cat carotid body, Brain Res. 338:297–307 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    Y.R. Kou, G.K. Kumar and N.R. Prabhakar. Importance of substance P in the chemoreception of the carotid body in vitro, FASEB J. 5:A1118 (1991).Google Scholar
  12. 12.
    P.A. Cragg, Y.R. Kou and N.R. Prabhakar. Role of substance P in rat carotid body responses to hypoxia and capsaicin, in: “Neurobiology and Cell Physiology of Chemoreception,” P. G. Data, H. Acker, and S. Lahiri, eds., Plenum Press (1992). (In press)Google Scholar
  13. 13.
    N.R. Prabhakar and N.S. Cherniack. Importance of tachykinin peptides in hypoxic ventilatory drive, in: “Chemoreceptors and Reflexes in Breathing: Cellular and Molecular Aspects, S. Lahiri, R.E. Foster, R.O. Davies, and A.I. Pack, eds., Oxford University Press, N.Y., pp 99–112 (1989).Google Scholar
  14. 14.
    D.L. Maxwell, R.W. Fuller, C.M.S. Dixon, F.M.C. Cuss, and P.J. Barnes. Ventilatory effects of substance P, vasoactive intestinal peptide, and nitroprusside in humans, J.Appl. Physiol. 68:295–301 (1990).PubMedGoogle Scholar
  15. 15.
    S. M. Bond, F. Cervero, and D.S. McQueen. Influence of neonatally administered capsaicin on baroreceptor and chemoreceptor reflexes in adult rat, Br. J. Pharmacol. 77:517–521 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    G.T. De Sanctis, F.H. Y. Green and J.E. Remmers. Ventilatory responses to hypoxia and hypercapnia in awake rats pretreated with capsaicin. J. Appl. Physiol. 70:1168–1174 (1991).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Rosell and K. Folkers. Substance P antagonists: a new type of pharmacological tool, Trends Pharmacol 3:211–212 (1982).CrossRefGoogle Scholar
  18. 18.
    N.R. Prabhakar, M. Runold, Y. Yamamoto, H. Lagercrantz, and C. von Euler. Effect of substance P antagonist on the hypoxia-induced carotid chemoreceptor activity. Acta Physiol Scand. 121:301–303(1984).PubMedCrossRefGoogle Scholar
  19. 19.
    N.R. Prabhakar, J. Mitra and N.S. Cherniack. Role of substance P in hypercapnic excitation of carotid chemoreceptors, J Appl Physiol 63:2418–2425 (1987).PubMedGoogle Scholar
  20. 20.
    N.R. Prabhakar, Y.R. Kou, and M. Runold. Effect of physalamine and eledoisin on carotid chemoreceptor activity: evidence for neurokinin-1 receptors. Neurosci. Lett. 120:183–186(1990).PubMedCrossRefGoogle Scholar
  21. 21.
    R.M. Snider, K.P. Longo, S.E. Drozda, J.A. Lowe III and S.E. Leeman. Effect of CP-96, 345, a non-peptide substance Preceptor-antagonist on salivation in rats, Proc. Natl Acad. Sci. USA. 88:1042–1044 (1991).CrossRefGoogle Scholar
  22. 22.
    H. Cao, R.M. Snider, N.S. Cherniack and N.R. Prabhakar. Effect of non peptide NK-1 receptor-antagonist on chemoreceptor response to hypoxia. FASEB J. (1992). (In press)Google Scholar
  23. 23.
    N.R. Prabhakar, M. Runold, G.K. Kumar, N.S. Cherniack, and A. Scarpa. Substance P and mitochondrial oxygen consumption: evidence for a direct intracellular role for the peptide, Peptides. 10:1003–1006(1989).PubMedCrossRefGoogle Scholar
  24. 24.
    Y-R. Kou, P. Ernsberger, P.A. Cragg, N.S. Cherniack, and N.R. Prabhakar. Role of α2-adrenergic receptors in carotid body response to hypoxia, Resp. Physiol 83:353 (1991).CrossRefGoogle Scholar
  25. 25.
    D.B. Bylund and U.C. U’Prichard. Characterization of α1 - and α2-adrenergic receptors, Int. Rev. Neurobiol 24:343 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Ponte and C.L. Sadler. Interactions between hypoxia acetylcholine and dopamine in the carotid body of rabbit and cat, J. Physiol (London) 410:395–610(1989).Google Scholar
  27. 27.
    N.S. Cherniack, N.R. Prabhakar, M.A. Haxhiu, and M. Runold. Excitatory and inhibitory influences on the ventilatory augmentation caused by hypoxia, in: “Response and Adaptation to Hypoxia,” S. Lahiri, N.S. Cherniack, and R.S. Fitzgerald, eds., Oxford Univ. Press, pp 107-121 (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Nanduri R. Prabhakar
    • 1
  1. 1.Department of Medicine, Physiology & BiophysicsCase Western Reserve University School of MedicineClevelandUSA

Personalised recommendations