Advertisement

Sphalerons in the Weak Interactions

  • Jutta Kunz
  • Yves Brihaye

Abstract

’t Hooft (1976) observed that the standard model does not absolutely conserve baryon and lepton number due to the Adler-Bell-Jackiw anomaly The process ‘t Hooft considered was spontaneous fermion number violation due to instanton induced transitions. Attracting much attention Ringwald (1990) recently argued, that such tunnelling transitions between topologically distinct vacua might indeed be observable at high energies at future accelerators (Mattis and Mottola, 1990).

Keywords

Higgs Mass Baryon Number Lepton Number Baryon Asymmetry Higgs Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiba, T., Kikuchi H., and Yanagida, T., (1988), Static minimum-energy path from a vacuum to a sphaleron in the Weinberg-Salam model, Phys. Rev. D38: 1937.Google Scholar
  2. Akiba, T., Kikuchi H., and Yanagida, T., (1989), The free energy of the sphaleron in the Weinberg-Salam model, Phys. Rev. D40: 179.Google Scholar
  3. Arnold, P., and McLerran, L., (1987), Sphalerons, small fluctuations, and baryon-number violation in electroweak theory, Phys. Rev. D36: 581.Google Scholar
  4. Arnold, P., and McLerran, L., (1988), The sphaleron strikes back: A response to objections to the sphaleron approximation, Phys. Rev. D37: 1020.CrossRefGoogle Scholar
  5. Baacke, J., and Lange, H., (1992), Stability analysis of the electroweak sphaleron, Mod. Phys. Lett. A7: 1455.MathSciNetzbMATHGoogle Scholar
  6. Boguta, J., and Kunz, J., (1985), Hadroids and sphalerons, Phys. Lett. B154: 407.MathSciNetGoogle Scholar
  7. Brihaye, Y., and Kunz, J., (1989), A sequence of new classical solutions in the Weinberg-Salam model, Mod. Phys. Lett. A4: 2723.MathSciNetGoogle Scholar
  8. Brihaye, Y., Giler, S., Kosinski, P., and Kunz, J., (1989), Configuration space around the sphaleron, Phys. Rev. D42: 2846.Google Scholar
  9. Brihaye, Y., and Kunz, J., (1990), Normal modes around the SU(2) sphalerons, Phys. Lett. B249: 90.MathSciNetGoogle Scholar
  10. Brihaye, Y., Kleihaus, B., and Kunz, J. (1992), Sphalerons at finite mixing angle and singular gauges, Preprint CERN-TH.6664/92. Google Scholar
  11. Brihaye, Y., and Kunz, J., (1992), Sphalerons, deformed sphalerons and normal modes, Acta Physica Polonica B23: 513.Google Scholar
  12. Brihaye, Y., and Kunz, J., (1993), Fermions in the background field of the sphaleron barrier, in preparation.Google Scholar
  13. Carson, L., Li, X., McLerran, L., and Wang, R.-T., (1990), Exact computation of the small-fluctuation determinant around a sphaleron, Phys. Rev. D42: 2127.Google Scholar
  14. Dashen, R. F., Hasslacher, B., and Neveu, A., (1974), Nonperturbative methods and extended-hadron models in field theory. III. Four-dimensional non-abelian models, Phys. Rev. D12: 4138.Google Scholar
  15. G. ‘t Hooft, G., (1976), Symmetry breaking through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37: 8.Google Scholar
  16. Kleihaus, B., Kunz, J., and Brihaye, Y., (1991), The electroweak sphaleron at physical mixing angle, Phys. Lett. B273: 100.CrossRefGoogle Scholar
  17. Klinkhamer, F. R., (1990), Sphalerons, deformed sphalerons and configuration space, Phys. Lett. B236: 187MathSciNetCrossRefGoogle Scholar
  18. Klinkhamer, F. R., and Manton, N. S., (1984), A saddle-point solution in the Weinberg-Salam theory, Phys. Rev. D30: 2212.ADSCrossRefGoogle Scholar
  19. Kolb, E. W., and Turner, M. S., (1990), “The Early Universe”, Addison-Wesley Publishing Company, Redwood City.Google Scholar
  20. Kunz, J., and Brihaye, Y., (1989), New sphalerons in the Weinberg-Salam theory, Phys. Lett. B216: 353.MathSciNetCrossRefGoogle Scholar
  21. Kunz, J., Kleihaus, B., and Brihaye, Y., (1992), Sphalerons at finite mixing angle, Phys. Rev. D46: 3587.ADSGoogle Scholar
  22. Kuzmin, V. A., Rubakov, V. A., and Shaposhnikov, M. E., (1985), On anomalous electroweak baryon-number non-conservation in the early universe, Phys. Lett. B155: 36.CrossRefGoogle Scholar
  23. Kuzmin, V. A., Rubakov, V. A., and Shaposhnikov, M. E., (1987), Anomalous electroweak baryon number non-conservation and GUT mechanism for baryogenesis, Phys. Lett. B191: 171.Google Scholar
  24. Manton, N. S., (1983), Topology in the Weinberg-Salam theory, Phys. Rev. D28: 2019.MathSciNetGoogle Scholar
  25. Mattis, M., and Mottola, E., (1990), eds., “Baryon Number Violation at the SSC?”, World Scientific, Singapore.Google Scholar
  26. McLerran, L., Shaposhnikov, M., Turok, N., and Voloshin, M., (1991), Why the baryon asymmetry of the universe is 10–10, Phys. Lett. /3256: 451.Google Scholar
  27. Nohl, C. R., (1975), Bound-state solutions of the Dirac equation in extended hadron models, Phys. Rev. D12: 1840.Google Scholar
  28. Ringwald, A., (1988a), Rate of anomalous electroweak baryon and lepton number violation at finite temperature, Phys. Lett. B201: 510.Google Scholar
  29. Ringwald, A., (1988b), Sphaleron and level crossing, Phys. Lett. /3213: 61.Google Scholar
  30. Ringwald, A., (1990), High energy breakdown of perturbation theory in the electroweak instanton sector, Nucl. Phys. B330: 1.ADSCrossRefGoogle Scholar
  31. Shaposhnikov, M. E., (1987), Baryon asymmetry of the universe in standard electroweak theory, Nucl. Phys. /3287: 757.Google Scholar
  32. Shaposhnikov, M. E., (1988), Structure of the high temperature gauge ground state and electroweak production of the baryon asymmetry, Nucl. Phys. B299: 797.MathSciNetADSCrossRefGoogle Scholar
  33. Shaposhnikov, M. E., (1992), Standard model solution of the baryogenesis problem, Phys. Lett. 13277: 324.Google Scholar
  34. Yaffe, L. G., (1989), Static solutions of SU(2)-Higgs theory, Phys. Rev. D40: 3463.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jutta Kunz
    • 1
    • 2
  • Yves Brihaye
    • 3
  1. 1.Institute for Theoretical PhysicsUniversity of UtrechtTA Utrechtthe Netherlands
  2. 2.Department of PhysicsUniversity of OldenburgOldenburgGermany
  3. 3.Department of Mathematics and PhysicsMons UniversityMonsBelgium

Personalised recommendations