Dynamical Properties of Classical Liquids and Liquid Mixtures

  • G. Jacucci
  • M. Ronchetti
  • W. Schirmacher
Part of the NATO ASI Series book series (NSSB, volume 112)


A simple liquid is defined as a system of N particles in which the structure dependent part of the potential energy can be represented as a sum over pairwise potentials:
$$E = \sum\limits_{i < j} {\varphi \left( {r_{ij} } \right)}$$
where i and j run over all particles of the system and rij is the distance of a pair of particles. Once the pair potential ø(r) is specified a number of physical properties can be calculated by statistical physical methods or by computer simulation techniques.


Concentration Fluctuation Sound Mode Simple Liquid Dynamic Structure Factor Thomas Fermi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    e. g. R. Scherm, Ann. Phys. (Paris) 7, 349 (1972)Google Scholar
  2. 2.
    J. P. Hansen and I. R. McDonald, Theory of Simple Liquids ( Academic Press, London, 1976 )Google Scholar
  3. 3.
    J. P. Boon and S. Yip, Molecular Hydrodynamics ( McGraw-Hill, New York, 1980 )Google Scholar
  4. 4.
    J. R. D. Copley and J. M. Rowe, Phys. Rev. Lett. 32, 49 (1974)Google Scholar
  5. 5.
    A. Rahman, Phys. Rev. Lett. 32, 52 (1974)Google Scholar
  6. 6.
    D. Levesque, L. Verlet, and J. Kurkijärvi, Phys. Rev. A7, 1690 (1973)ADSCrossRefGoogle Scholar
  7. 7.
    A. Rahman in “Neutron inelastic scattering”,Vol. 1 ( IAEA, Vienna, 1968 )Google Scholar
  8. 8.
    G. Bucher and W. Gläser, Verhandl.DPG(VI)19,452(1984)Google Scholar
  9. 9.
    J. Bosse, W. Götze, and M. Lücke Phys. Rev. A17,434(1978) and Phys. Rev. A18, 1176 (1978)Google Scholar
  10. 10.
    A. B. Bhatia and D. E. Thornton, Phys. Rev. B1, 3004 (1970)Google Scholar
  11. 11.
    G. Jacucci and I. R. MacDonald in “Liquid and Amorphous Metals” ed. E. Löscher and H. Coufal, Sijthoff and Noordhoff, Alphen, The Nederlands, 1980, p. 143Google Scholar
  12. 12.
    L. Dagens, M. Rasolt, and R. Taylor, Phys. Rev. B11, 2726 (1975)Google Scholar
  13. 13.
    A. Rahman in “Statistical Mechanics: New Concepts, New Problems, New Applications’; ed. S. A. Rice, K. F. Freed, and J. C. Light, University press, Chicago, 1972Google Scholar
  14. 14.
    G. Jacucci, I. R. MacDonald, and R. Taylor, J. Phys. F8, L121 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    A. P. Copestake, R. Evans, H. Ruppersberg, and W. Schirmacher, J. Phys. F13, 1993 (1983)Google Scholar
  16. 16.
    H. Ruppersberg and H. Reiter, J. Phys. F12, 1311 (1982)Google Scholar
  17. 17.
    M. Soltwisch, D. Quitmann, H. Ruppersberg, and J. B. Suck, Phys. Rev. B28, 5583 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    H. Ruppersberg and W. Speicher, Z. Naturforsch, 31A, 47 (1976)Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • G. Jacucci
    • 1
  • M. Ronchetti
    • 1
  • W. Schirmacher
    • 2
  1. 1.Dipartimento di FisicaUniversitá di TrentoPovo, TrentoItaly
  2. 2.Physik-Department E13Technische Universität MünchenGarchingGermany

Personalised recommendations