Advertisement

Standard Interpretation and Beyond

  • Dipankar Home

Abstract

Like any other physical theory, quantum mechanics has two distinct but interrelated components: a mathematical formalism and a physical interpretation. By formalism we mean an algorithmic structure consisting of equations and calculational recipes. However to compare computed results with empirical observations, we need interpretational inputs to connect the formal language of a theory to actual experimental results. An interpretation provides physical content to a theory in terms of some key concepts; e.g., the concept of force as a cause for acceleration is crucial in understanding the basic equation of motion in Newtonian mechanics. In this book we are mainly concerned with interpretational issues in nonrelativistic quantum mechanics. Although we assume the reader to be sufficiently familiar with the basic mathematical technicalities of the subject, we begin by briefly recapitulating some of the key general features of the standard formalism.

Keywords

Wave Function SchrOdinger Equation Standard Interpretation Bohmian Mechanics Hide Variable Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, NJ, 1951), chap. 4.Google Scholar
  2. 2.
    J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952), pp. 525–528.zbMATHGoogle Scholar
  3. 3.
    V. Bargmann, Ann. Math. 59, 1 (1954).MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, Netherlands, 1993), pp. 245–249.zbMATHGoogle Scholar
  5. 5.
    F. A. Kaempffer, Concepts in Quantum Mechanics (Academic Press, New York, 1965).zbMATHGoogle Scholar
  6. 6.
    D. M. Greenberger, Am. J. Phys. 47, 35 (1979).ADSGoogle Scholar
  7. 7.
    H. Margenau, Phys. Rev. 49, 240 (1936).ADSzbMATHGoogle Scholar
  8. 8.
    W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2 (Wiley, New York, 1966), p. 487.zbMATHGoogle Scholar
  9. D. T. Gillespie, Am. J. Phys. 51, 520 (1983).ADSGoogle Scholar
  10. 9.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932). English translation: Mathematical Foundations of Quantum Mechanics (Princeton Univer. Press, Princeton, NJ, 1955), p. 307.zbMATHGoogle Scholar
  11. 10.
    U. Fano, Rev. Mod. Phys. 29, 74 (1957).MathSciNetADSzbMATHGoogle Scholar
  12. 11.
    B. d’Espagnat, Veiled Reality—An Analysis of Present-Day Quantum Mechanical Concepts (Addison-Wesley, Reading, MA, 1995), chap. 6.Google Scholar
  13. 12.
    G. C. Ghirardi, A. Rimini, and T. Weber, Nuov. Cim. 29B, 135 (1975).MathSciNetADSGoogle Scholar
  14. 13.
    A. J. Leggett, Contemp. Phys. 25, 583 (1984).ADSGoogle Scholar
  15. 14.
    J. Summhammer, G. Badurek, H. Rauch, U. Kischko, and A. Zeilinger, Phys. Rev. A 27, 2523 (1983).ADSGoogle Scholar
  16. 15.
    L. E. Ballentine, Quantum Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1990), p. 165.Google Scholar
  17. 16.
    H. P. Robertson, Phys. Rev. 34, 163 (1929).ADSGoogle Scholar
  18. 17.
    W. Heisenberg, Z. Phys. 43, 172 (1927).ADSzbMATHGoogle Scholar
  19. 18.
    W. Heisenberg, Physical Principles of the Quantum Theory (Univer. of Chicago Press, Chicago, 1930), chap 2.zbMATHGoogle Scholar
  20. 19.
    D. Home and S. Sengupta, Am. J. Phys. 51, 567 (1983).ADSGoogle Scholar
  21. 20.
    L. Mandelstamm and I. Tamm, J. Phys. (USSR) 9, 249 (1945).Google Scholar
  22. 21.
    G. R. Allcock, Ann. Phys. (NY) 53, 253 (1969).ADSGoogle Scholar
  23. G. R. Allcock, Ann. Phys. (NY) 53, 286 (1969).ADSGoogle Scholar
  24. G. R. Allcock, Ann. Phys. (NY) 53, 311 (1969).ADSGoogle Scholar
  25. 22.
    E. P. Wigner, in Aspects of Quantum Theory (A. Salam and E. P. Wigner, eds.) (Cambridge Univer. Press, Cambridge, 1972).Google Scholar
  26. 23.
    E. A. Gislason, N. H. Sabelli, and J. W. Wood, Phys. Rev. A 31, 2078 (1985).MathSciNetADSGoogle Scholar
  27. 24.
    Y. Aharonov and D. Bohm, Phys. Rev. 122, 1649 (1961).MathSciNetADSzbMATHGoogle Scholar
  28. 25.
    Y. Aharonov and D. Bohm, Phys. Rev. 134, B1417 (1964).MathSciNetADSGoogle Scholar
  29. 26.
    Y. Aharonov and I. L. Safko, Ann. Phys. (NY) 91, 279 (1975).ADSGoogle Scholar
  30. 27.
    Y. I. Vorontsov, Sov. Phys.-Usp. 24, 150 (1981).MathSciNetADSGoogle Scholar
  31. 28.
    D. T. Pegg, Phys. Lett. A 153, 263 (1991).ADSGoogle Scholar
  32. 29.
    N. R. Hanson, Am. J. Phys. 27, 1 (1959).ADSzbMATHGoogle Scholar
  33. 30.
    H. P. Stapp, Am. J. Phys. 40, 1098 (1972).ADSGoogle Scholar
  34. 31.
    D. Home and M. A. B. Whitaker, Phys. Reports 210, 223 (1992).MathSciNetADSGoogle Scholar
  35. 32.
    L. E. Ballentine, Rev. Mod. Phys. 42, 358 (1970).ADSzbMATHGoogle Scholar
  36. 33.
    N. Bohr, Essays 1958/1962 on Atomic Physics and Human Knowledge (Wiley, New York, 1963), p. 25.zbMATHGoogle Scholar
  37. 34.
    N. Bohr, Dialectica 2, 312 (1948).zbMATHGoogle Scholar
  38. 35.
    W. Heisenberg, in Neils Bohr and the Development of Physics (W. Pauli, ed.) (Pergamon Press, Oxford, UK, 1955).Google Scholar
  39. 36.
    W. Heisenberg, Physics and Philosophy (Harper and Row, New York, 1958).Google Scholar
  40. 37.
    H. J. Folse, Philosophy of Neils Bohr (North-Holland, Amsterdam, 1985).Google Scholar
  41. 38.
    D. Murdoch, Neils Bohr’s Philosophy of Physics (Cambridge Univer. Press, Cambridge, 1987).Google Scholar
  42. 39.
    M. Beller, Stud. Hist. Phil. Sci. 23, 147 (1992).MathSciNetGoogle Scholar
  43. 40.
    E. Mackinnon, in Niels Bohr and Contemporary Philosophy, (J. Faye and H. J. Folse, eds.) (Kluwer, Dordrecht, Netherlands, 1994), pp. 279–302.Google Scholar
  44. 41.
    M. Beller and A. Fine, in Niels Bohr and Contemporary Philosophy (J. Faye and H. J. Folse, eds.) (Kluwer, Dordrecht, Netherlands, 1994), pp. 1–31.Google Scholar
  45. 42.
    N. Bohr, Atomic Theory and the Description of Nature (Cambridge Univer. Press, Cambridge, 1934), pp. 54–56., p. 108.zbMATHGoogle Scholar
  46. 43.
    W. Pauli, Letter dated 12 Aug. 1948, quoted in K. V. Laurikainen, Beyond the Atom: The Philosophical Thought of Wolfgang Pauli (Springer-Verlag, Heidelberg, Germany, 1988), p. 20.Google Scholar
  47. 44.
    K. V. Laurikainen, Beyond the Atom: The Philosophical Thought of Wolfgang Pauli (Springer-Verlag, Heidelberg, Germany, 1988).zbMATHGoogle Scholar
  48. 45.
    R. Nair, J. Sci. Ind. Res. 49, 532 (1990).Google Scholar
  49. 46.
    M. Born, Z. Phys. 37, 863 (1926).ADSzbMATHGoogle Scholar
  50. M. Born, Z. Phys. 38, 803 (1926).ADSGoogle Scholar
  51. M. Born, Z. Phys. 40, 167 (1927).ADSGoogle Scholar
  52. 47.
    M. Beller, Stud. Hist. Phil. Sci. 21, 563 (1990).MathSciNetGoogle Scholar
  53. 48.
    W. Pauli, Z. Phys. 43, 81 (1927).ADSGoogle Scholar
  54. 49.
    P. A. M. Dirac, Principles of Quantum Mechanics (Oxford University Press, Oxford, UK, 1930), chaps. 2 and 3.zbMATHGoogle Scholar
  55. 50.
    P. K. Feyerabend, in Frontiers of Science and Philosophy (R. G Colodny, ed.) (Allen and Unwin, London, 1964), pp. 189–283.Google Scholar
  56. 51.
    A. Shimony, in Proc. Symp. Foundations of Modern Physics 1992 (K. V. Laurikainen and C. Montonen, eds.) (World Scientific, Singapore, 1993).Google Scholar
  57. 52.
    F. Selleri, Quantum Paradoxes and Physical Reality, (Kluwer, Dordrecht, Netherlands, 1990), chaps. 1 and 7; see also M. Beller, Phil. Sci., to be published.Google Scholar
  58. 53.
    L. E. Ballentine, Am. J. Phys. 40, 1763 (1972).ADSGoogle Scholar
  59. 54.
    D’Espagnat, Veiled Reality—An Analysis of Present-Day Quantum Mechanical Concepts (Addison-Wesley, Reading, MA, 1995), pp. 297-302.Google Scholar
  60. 55.
    D. I. Blokhintsev, Philosophy of Quantum Mechanics (Reidel, Dordrecht, Netherlands, 1968), p. 50.zbMATHGoogle Scholar
  61. 56.
    R. Penrose in Quantum Implications (B. J. Hiley and D. Peat, eds.) (Routledge, London, 1987), p. 105.Google Scholar
  62. 57.
    W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).ADSGoogle Scholar
  63. 58.
    H. P. Yuen, Phys. Lett. A 113, 405 (1986).MathSciNetADSGoogle Scholar
  64. G. M. D’Ariano and H. P. Yuen, Phys. Rev. Lett. 76, 2832 (1996).ADSGoogle Scholar
  65. 59.
    Y. Aharonov and L. Vaidman, Phys. Lett. A 178, 38 (1993).ADSGoogle Scholar
  66. 60.
    Y. Aharonov and L. Vaidman, in Quantum Control and Measurement (H. Ezawa and Y. Murayama, eds.) (Elsevier, Amsterdam, 1993), pp. 99–106.Google Scholar
  67. 61.
    Y. Aharonov, J. Anandan, and L. Vaidman, Phys. Rev. A 47, 4616 (1993).ADSGoogle Scholar
  68. 62.
    P. Ghose and D. Home, Found. Phys. 25, 1105 (1995).MathSciNetADSGoogle Scholar
  69. 63.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1948), pp. 22–23.Google Scholar
  70. 64.
    V. Singh, in Gravitation, Quanta and the Universe (A. R. Prasanna et al, eds.) (Wiley Eastern, New Delhi, India, 1980), p. 238.Google Scholar
  71. 65.
    M. Born, Nature 119, 354 (1927).ADSzbMATHGoogle Scholar
  72. M. Born, reprinted in Physics in my Generation (Pergamon Press, London, 1956), pp. 6–13.zbMATHGoogle Scholar
  73. 66.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932), chap. 4, sects. 1 and 2. English translation: Mathematical Foundations of Quantum Mechanics (Princeton Univer. Press, Princeton, NJ, 1955).zbMATHGoogle Scholar
  74. 67.
    M. Jammer, Philosophy of Quantum Mechanics (Wiley, New York, 1974), chap. 7.Google Scholar
  75. 68.
    F. Selleri, Quantum Paradoxes and Quantum Reality (Kluwer, Dordrecht, Netherlands, 1990), chap. 2.Google Scholar
  76. 69.
    M. Born, Natural Philosophy of Cause and Chance (Clarendon Press, Oxford, UK, 1949), pp. 108–109.Google Scholar
  77. 70.
    N. Bohr, in New Theories in Physics (Int. Inst. of Intellectual Cooperation, Paris, 1939), p. 16.Google Scholar
  78. 71.
    W. Pauli, Dialectica 2, 309 (1948).Google Scholar
  79. 72.
    T. J. Pinch, Phys. Education 14, 48 (1979).ADSGoogle Scholar
  80. 73.
    J. T. Cushing, Quantum Mechanics—Historical Contingency and the Copenhagen Hegemony (Univer. of Chicago Press, Chicago, 1994), pp. 131–134.zbMATHGoogle Scholar
  81. 74.
    D. Bohm, Physical Review 85, 166 (1952).MathSciNetADSzbMATHGoogle Scholar
  82. 75.
    D. Bohm, Physical Review 85, 180 (1952).MathSciNetADSGoogle Scholar
  83. 76.
    M. Jammer, Philosophy of Quantum Mechanics (Wiley, New York, 1974), chap. 7.Google Scholar
  84. 77.
    J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).ADSzbMATHGoogle Scholar
  85. 78.
    F. Selleri, Quantum Paradoxes and Physical Reality (Kluwer, Dordrecht, Netherlands, 1990), pp. 48–51.Google Scholar
  86. 79.
    A. M. Gleason, J. Math. Mech. 6, 885 (1957).MathSciNetzbMATHGoogle Scholar
  87. 80.
    S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967).MathSciNetzbMATHGoogle Scholar
  88. 81.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, Netherlands, 1993), pp. 196–201.zbMATHGoogle Scholar
  89. 82.
    R. Penrose, in Quantum Reflections (J. Ellis and A. Amati, eds.) (Cambridge Univer. Press, Cambridge, 1994).Google Scholar
  90. 83.
    D. Chang and P. B. Pal, Mod. Phys. Lett. A 20, 1845 (1994).MathSciNetADSGoogle Scholar
  91. 84.
    D. Home and S. Sengupta, Phys. Lett. 102A, 159 (1984).MathSciNetADSGoogle Scholar
  92. 85.
    S. M. Roy and V. Singh, Vistas in Astronomy, 37 (Quantum Physics and the Universe) (M. Namiki et al, eds.) (Pergamon Press, Oxford, UK, 1993), pp. 317–320.Google Scholar
  93. 86.
    A. Peres, Phys. Lett. A 151, 107 (1990).MathSciNetADSGoogle Scholar
  94. 87.
    N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990).MathSciNetADSzbMATHGoogle Scholar
  95. 88.
    N. D. Mermin, Rev. Mod. Phys. 65, 803 (1993).MathSciNetADSGoogle Scholar
  96. 89.
    T. F. Jordan and E. C. G. Sudarshan, Am. J. Phys. 59, 698 (1991).ADSGoogle Scholar
  97. 90.
    N. D. Mermin, Am. J. Phys. 60, 25 (1992).MathSciNetADSzbMATHGoogle Scholar
  98. 91.
    N. Bohr, Atomic Physics and Human Knowledge (Wiley, New York, 1958), pp. 32–66.zbMATHGoogle Scholar
  99. 92.
    M. L. G. Redhead, Incompleteness, Nonlocality, and Realism (Clarendon Press, Oxford, UK, 1987), chap. 6.zbMATHGoogle Scholar
  100. 93.
    E. Santos, Found. Phys. 21, 221 (1991).MathSciNetADSGoogle Scholar
  101. 94.
    D. Home and F. Selleri, J. Phys. A 24, L1073 (1991).ADSGoogle Scholar
  102. 95.
    D. Bohm, in Ghost in the Atom (P. C. W. Davies and J. R. Brown, eds.) (Cambridge Univer. Press, Cambridge, 1986), p. 126.Google Scholar
  103. 96.
    L. de Broglie, Comptes Rendus 183, 447 (1926).zbMATHGoogle Scholar
  104. 97.
    L. de Broglie, Comptes Rendus 184, 273 (1927).zbMATHGoogle Scholar
  105. L. de Broglie, Comptes Rendus 185, 380 (1927).zbMATHGoogle Scholar
  106. L. de Broglie, Comptes Rendus 8, 225 (1927).zbMATHGoogle Scholar
  107. 98.
    M. Jammer, Philosophy of Quantum Mechanics (Wiley, New York, 1974), pp. 44–49.Google Scholar
  108. 99.
    L. de Broglie, in Electrons et Photons (Gauthier-Villars, Paris, 1928), pp. 105–132.Google Scholar
  109. 100.
    W. Pauli, in Electrons et Photons (Gauthier-Villars, Paris, 1928), pp. 280–282.Google Scholar
  110. 101.
    J. T. Cushing, Quantum Mechanics—Historical Contingency and the Copenhagen Hegemony (Univer. of Chicago Press, Chicago, 1994), chaps. 6, 10, and 11.zbMATHGoogle Scholar
  111. 102.
    P. Holland, Quantum Theory of Motion (Cambridge Univer. Press, Cambridge, 1993), pp. 15–20.Google Scholar
  112. 103.
    D. Bohm and B. J. Hiley, Found. Phys. 12, 1001 (1982).MathSciNetADSGoogle Scholar
  113. 104.
    D. Bohm and B. J. Hiley, undivided Universe (Routledge, London, 1993).Google Scholar
  114. 105.
    J. T. Cushing, Quantum Mechanics—Historical Contingency and the Copenhagen Hegemony (Univer. of Chicago Press, Chicago, 1994), chap. 4.zbMATHGoogle Scholar
  115. 106.
    D. Z. Albert, Quantum Mechanics and Experience (Harvard Univer. Press, Cambridge, MA, 1992), chap. 7.Google Scholar
  116. D. Z. Albert, Sc. Am. 270(5), 32 (1994).Google Scholar
  117. 107.
    A. Whitaker, Einstein, Bohr, and the Quantum Dilemma (Cambridge Univer. Press, Cambridge, 1996), chap. 7.Google Scholar
  118. 108.
    Bohmian Mechanic and Quantum Theory: An Appraisal (J. T. Cushing, A. Fine, and S. Goldstein, eds.) (Kluwer, Dordrecht, Netherlands, 1996).Google Scholar
  119. 109.
    E. J. Squires, in Waves and Particles in Light and Matter (A. van der Merwe and A. Garuccio, eds.) (Plenum, New York, 1993).Google Scholar
  120. E. J. Squires, also in Bohmian Mechanics and Quantum Theory: An Appraisal (J. T. Cushing, A. Fine, and S. Goldstein, eds.), (Kluwer, Dordrecht, Netherlands, 1996), pp. 131–140.Google Scholar
  121. 110.
    C. Philippidis, C. Dewdney, and B. J. Hiley, Nuov. Cim. 52B, 15 (1979).MathSciNetADSGoogle Scholar
  122. 111.
    C. Philippidis, D. Bohm, and R. D. Kaye, Nuov. Cim. 71B, 75 (1982).MathSciNetADSGoogle Scholar
  123. 112.
    C. Dewdney and B. J. Hiley, Found. Phys. 12, 27 (1982).ADSGoogle Scholar
  124. 113.
    C. Pagonis, Nature 364, 398 (1993).ADSGoogle Scholar
  125. 114.
    L. Hardy, in Bohmian Mechanics and Quantum Theory: An Appraisal (J. T. Cushing, A. Fine, and S. Goldstein, eds.) (Kluwer, Dordrecht, Netherlands, 1996), pp. 67–76.Google Scholar
  126. 115.
    C. Dewdney, L. Hardy, and E. J. Squires, Phys. Lett. A 184, 6 (1993).ADSGoogle Scholar
  127. 116.
    C. Dewdney, J. Phys. A 25, 3615 (1992).MathSciNetADSGoogle Scholar
  128. 117.
    C. Pagonis and R. Clifton, Found. Phys. 25, 281 (1995).MathSciNetADSGoogle Scholar
  129. 118.
    H. R. Brown, C. Dewdney, and G. Horton, Found. Phys. 25, 329 (1995).ADSGoogle Scholar
  130. 119.
    H. R. Brown, A. Elby, and R. Weingard, in Bohmian Mechanics and Quantum Theory: An Appraisal (J. T. Cushing, A. Fine, and S. Goldstein, eds.) (Kluwer, Dordrecht, Netherlands, 1996).Google Scholar
  131. 120.
    E. J. Squires, Found. Phys. Lett. 3, 87 (1990).Google Scholar
  132. 121.
    W. Pauli, in Louis deBroglie—Physicien et Penseur (A. George, ed.) (Albin-Michel, Paris, 1953), pp. 33–42.Google Scholar
  133. 122.
    J. B. Keller, Phys. Rev. 89, 1040 (1953).MathSciNetADSzbMATHGoogle Scholar
  134. 123.
    D. Home, Phys. Lett. A 190, 353 (1994).MathSciNetADSzbMATHGoogle Scholar
  135. 124.
    A. Valentini, On the Pilot-Wave Theory of Classical, Quantum, and Subquantum Physics (Springer-Verlag, Berlin, 1997), chaps. 2 and 3.Google Scholar
  136. 125.
    A. Valentini, Phys. Lett. A. 156, 5 (1991).MathSciNetADSGoogle Scholar
  137. 126.
    A. Valentini, Phys. Lett. A 158, 1 (1991).MathSciNetADSGoogle Scholar
  138. 127.
    J. T. Cushing, Quantum Mechanics—Historical Contingency and the Copenhagen Hegemony (Uni ver. of Chicago Press, Chicago, 1994), chap. 9.zbMATHGoogle Scholar
  139. 128.
    D. Dürr, S. Goldstein, and N. Zanghi, J. Stat. Phys. 67, 843 (1992).ADSzbMATHGoogle Scholar
  140. D. Dürr, S. Goldstein, and N. Zanghi, J. Stat. Phys. 68, 259 (1992).ADSzbMATHGoogle Scholar
  141. 129.
    J. T. Cushing, in Perspectives on Quantum Reality (R. Clifton, ed.) (Kluwer, Dordrecht, Netherlands, 1996).Google Scholar
  142. 130.
    S. M. Roy and V. Singh, Mod. Phys. Lett. A 10, 709 (1995).MathSciNetADSzbMATHGoogle Scholar
  143. 131.
    A. Martin and S. M. Roy, Phys. Lett. B 350, 66 (1995).MathSciNetADSGoogle Scholar
  144. 132.
    D. Home, Interview with David Bohm in Science Today 20 (11), 25 (1986).MathSciNetGoogle Scholar
  145. 133.
    J. Bell, in Speakable and Unspeakable in Quantum Mechanics (Cambridge Univer. Press, Cambridge, 1987), p. 111.zbMATHGoogle Scholar
  146. 134.
    W. Pauli, in Handbuck der Physik, 24, part 1 (Springer Verlag, Berlin, 1933), pp. 83–272.Google Scholar
  147. 135.
    C. R. Leavens and G. C. Aers, in Scanning Tunneling Microscopy, 3 (R. Weisendanger and H. J. Güntherodt, eds.) (Springer-Verlag, Berlin, 1993), pp. 105–140.Google Scholar
  148. 136.
    C. R. Leavens, Found. Phys. 25, 229 (1995).MathSciNetADSGoogle Scholar
  149. 137.
    C. R. Leavens, Phys. Lett. A 197, 88 (1995).MathSciNetADSzbMATHGoogle Scholar
  150. 138.
    J. T. Cushing, Found. Phys. 25, 269 (1995).MathSciNetADSGoogle Scholar
  151. J. T. Cushing, Tunneling Times in Bohm’s Theory (Univer. of Notre Dame preprint, Notre Dame, IN, 1994).Google Scholar
  152. 139.
    J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).ADSGoogle Scholar
  153. 140.
    K. Kleinknecht, in CP Violation (C. Jarlskog, ed.) (World Scientific, Singapore, 1989), pp. 41–104.Google Scholar
  154. 141.
    A. Pais and O. Piccioni, Phys. Rev. 100 1487 (1955).ADSGoogle Scholar
  155. 142.
    C. Geweniger et al., Phys. Lett. B 48, 487 (1974).ADSGoogle Scholar
  156. V. Chaloupka et al., Phys. Lett. B 50, 1 (1974).Google Scholar
  157. W. C. Carithers et al., Phys. Rev. Lett. 34, 1244 (1975).ADSGoogle Scholar
  158. N. Grossmann et al, Phys. Rev. Lett. 59, 18 (1987).ADSGoogle Scholar
  159. 143.
    W. Heisenberg, Physics and Philosophy (Harper and Row, New York, 1958), pp. 129–130.Google Scholar
  160. 144.
    W. Heisenberg, in Neils Bohr and the Development of Physics (W. Pauli, ed.) (Pergamon Press, Oxford, UK, 1955), p. 28.Google Scholar
  161. 145.
    M. Beller, Science in Context 6, 241 (1993).MathSciNetGoogle Scholar
  162. 146.
    N. Bohr, Hitchcock Lectures (Raymond Birge Collection, Am. Inst. of Physics, New York, 1937).Google Scholar
  163. 147.
    P. A. M. Dirac, Principles of Quantum Mechanics (Oxford Univer. Press, Oxford, UK, 1958), p. vii.zbMATHGoogle Scholar
  164. 148.
    V. F. Weisskopf, Sci. Am. 242 (5), 8 (1980).Google Scholar
  165. 149.
    J. A. Wheeler, At Home in the Universe (Am. Inst. of Physics, New York, 1994), p. 122.Google Scholar
  166. 150.
    R. B. Griffiths, J. Stat. Phys. 36, 219 (1984).ADSzbMATHGoogle Scholar
  167. R. B. Griffiths, Am. J. Phys. 55, 11 (1987).ADSGoogle Scholar
  168. 151.
    R. B. Griffiths, Phys. Rev. Lett. 70, 2201 (1993).MathSciNetADSzbMATHGoogle Scholar
  169. R. B. Griffiths, Found. Phys. 23, 1601 (1993).MathSciNetADSGoogle Scholar
  170. 152.
    R. Omnes, Rev. Mod. Phys. 64, 339 (1992).MathSciNetADSGoogle Scholar
  171. 153.
    R. Omnes, Interpretation of Quantum Mechanics (Princeton Univer. Press, Princeton, NJ, 1994), chap. 4.zbMATHGoogle Scholar
  172. 154.
    M. Gell-Mann and J. B. Hartle, Phys. Rev. D 47, 3345 (1993).MathSciNetADSGoogle Scholar
  173. 155.
    M. Gell-Mann, Quark and the Jaguar (Little Brown, London, 1994), chap. 11.zbMATHGoogle Scholar
  174. 156.
    J. J. Halliwell, in Fundamental Problems in Quantum Theory (D. M. Greenberger and A. Zeilinger, eds.) (New York Academy of Sciences, New York, 1995), pp. 726–740.Google Scholar
  175. 157.
    B. d’Espagnat, Veiled Reality—An Analysis of Present-Day Quantum Mechanical Concepts (Addison-Wesley, Reading, MA, 1995), pp. 132–146.Google Scholar
  176. 158.
    N. Gisin and I. C Percival, J. Phys. A. 25, 5677 (1992).MathSciNetADSzbMATHGoogle Scholar
  177. 159.
    N, Gisin and IC. Percival, J. Phys. A 26, 2245 (1993).MathSciNetADSGoogle Scholar
  178. 161.
    I. C. Percival, Proc. Roy. Soc. A 447, 189 (1994).ADSzbMATHGoogle Scholar
  179. I. C. Percival, J. Phys. A 27, 1003 (1994).MathSciNetADSGoogle Scholar
  180. 162.
    N. Gisin, in Fundamental Problems in Quantum Theory (D. M. Greenberger and A. Zeilinger, eds.) (New York Academy of Sciences, New York, 1995), pp. 524–533.Google Scholar
  181. 163.
    J. T. Cushing, Quantum Mechanics—Historical Contingency and the Copenhagen Hegemony (Uni ver. of Chicago Press, Chicago, 1994), chap. 11.zbMATHGoogle Scholar
  182. 164.
    P. Duhem, Aim and Structure of Physical Theory (Atheneum, New York, 1974).Google Scholar
  183. 165.
    W. V. Quine, Phil. Review 60, 20 (1951).Google Scholar
  184. 166.
    F. Selleri, Quantum Paradoxes and Physical Reality (Kluwer, Dordrecht, Netherlands, 1990), chap. 7.Google Scholar
  185. 167.
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge Univer. Press, Cambridge, 1987), p. 160.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Dipankar Home
    • 1
  1. 1.Bose InstituteCalcuttaIndia

Personalised recommendations