Equilibration and Belief Revision: Strategies for Cooperative Tutoring and Learning

  • Flávio Moreira de Oliveira
  • Rosa Maria Viccari

Abstract

This paper describes the use of belief revision combined with learning in a tutorial situation — that is, the interaction between an intelligent tutoring system and a learner. In this approach, learning is interpreted as a process of moving towards a state of equilibrium between the system’s beliefs and new information coming from the learner. We discuss the application of these approaches in a hypothetical scenario of interaction in the domain of integer arithmetics.

Keywords

Problem Solver Belief Revision Belief Base Tutoring System Domain Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Costa, E. Gaspar, G. Coelho, H., 1992, A formal approach to ILES: a first tentative. Proceedings of the NATO Advanced Workshop on Student Modeling, Montreal, May 1991. Springer-Verlag, Berlin.Google Scholar
  2. Chan, T.W. & Baskin, A.B., 1988, Studying with the prince: the computer as a learning companion. Proceedings of Intelligent Tutoring Systems Conference. Montreal.Google Scholar
  3. Douglas, S.A., 1988, Detecting and repairing tutoring failures. Proceedings of the 3rd CeRCLe Workshop on Teaching Knowledge and Intelligent Tutoring. Ullswater.Google Scholar
  4. Elsom-Cook, M., 1988, Guided discovery tutoring and bounded user modelling. In: Self, J. (ed.) Artificial Intelligence and Human Learning. Chapman & Hall.Google Scholar
  5. Franco, S.M.L., 1992, Representação e Diagnóstico de Falsas Concepções em um Sistema Tutor Inteligente. UFRGS, Porto Alegre.Google Scholar
  6. Gardenfors, P. & Makinson, D. Nonmonotonic inference based on expectations. In: Workshop on Non-Monotonic Logic and the Dynamics of Belief of the Fourth European Summer School in Logic, Language and Information. Univ. of Essex, Colchester.Google Scholar
  7. Garofalo J. Lester, F.K., 1985, Metacognition, cognitive monitoring and mathematical performance. Journal for Research in Mathematics Education, 16(3) p. 163–176.CrossRefGoogle Scholar
  8. Hintikka, J., 1962, Knowledge and Belief. Cornell, Uniersity Press, Ithaca, New York.Google Scholar
  9. Martins, A.T. 1989, Um Sistema de Revisão de Crenças para Resolução de Problemas. UFRGS, Porto Alegre.Google Scholar
  10. Montangero, J., 1992, Models of equilibrium and progress towards equilibrium in Jean Piaget’s work. In: MAURICE, D. & MONTANGERO, J. “Equilibrium and Equilibration”. Cahiers de la Fondation Archives Jean Piaget, n° 12, Geneva.Google Scholar
  11. Nilsson, N. & Genesereth, M., 1987, Logical Foundations of Artificial Intelligence. Morgan Kaufmann.Google Scholar
  12. Oliveira, F.M. Viccari, R.M., 1992, Belief logics and student modeling in intelligent tutoring systems, in: Proceedings of the Iberoamerican Symposium on Informatics and Education, Santo Domingo, 8–12 Jun.Google Scholar
  13. Piaget, J., 1947, La Psychologie de l’Intelligence. Colin, Paris. (We have used the Brazilian translation: A Psicologia da Inteligencia, Zahar, RJ, 1977).Google Scholar
  14. Self, J., 1987, The Application of machine learning to student modelling. In: Lawler, R.W. & Mazdani, Y. (eds.) Artificial Intelligence and Education. Ablex Publishing, p.267-280.Google Scholar
  15. Self, J., 1988, Knowledge, belief and user modelling. In: O’shea, T. & Sgrev, V. (eds.) AI III: Methodologies, Systems and Applications. North-Holland.Google Scholar
  16. Self, John., 1990, Computational mathetics: the missing link in intelligent tutoring systems research? Proceedings of the NATO Advanced Research Workshop, Sintra (Portugal).Google Scholar
  17. Viccari, R.M.; Coelho, H.; Costa, E., 1988, Pragmatic attachment devices for conversations with tutors. vol. Applied Artificial Intelligence, 2(3).Google Scholar
  18. Young, R.M. et al., 1987, Analysis of an extended concept learning task. Proceedings of IJCAI.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Flávio Moreira de Oliveira
    • 1
  • Rosa Maria Viccari
    • 1
  1. 1.Instituto de Informática Departamento de Informática TeóricaUniversidade Federal do Rio Grande do SulBrazil

Personalised recommendations