Lexical Error Correction Using Contextual Linguistic Expectations

  • K. Klebesits
  • Th. Grechenig


Natural Language Understanding systems should be able to handle incorrect inputs user-friendly by correcting errors autonomously. Lexical error correction methods based solely on the use of morphologic information cannot cope with these requirements. To achieve a more intelligent lexical error correction, it is necessary to consider not only the isolated word but also its intrasentential context. Context information can be used to obtain expectations on the linguistic attributes of an erroneous word. Therefore, it is reasonable to integrate morphologic, syntactic and semantic knowledge into the correction process.

We present an error classification scheme where errors are categorized according to the level of linguistic knowledge, which is needed to correct and understand the input sentence. The presented error correction approach is based on a semantically oriented parsing strategy using both syntactic and semantic expectations on incorrect words. Probabilistically rated syntactic expectations on word categories are computed by applying Bayes’ theorem, thus taking into account sentence fragments already parsed. To integrate semantic knowledge the domain of discourse is represented explicitly.

Examining the intrasentential context of a incorrect word makes it feasible to correct masked mistakes, which are only resolvable by the use of syntactic and semantic information.


Correction Process Semantic Knowledge Syntactic Category Word Category Linguistic Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dorffner G.: Schreibfehlerverbesserung als Komponente eines sprach-verstehenden Systems, Master’s Thesis, Institut f. Medizinische Kybernetik und Artificial Intelligence, University of Vienna, 1985Google Scholar
  2. [2]
    Fillmore C.: The case for case, in Bach E., Harms R. (eds.): “Universals In Linguistic Theory”, New York, Holt, Rinehart and Winston, 1968Google Scholar
  3. [3]
    Fliegner M.: Überlegungen zur automatischen Schreibfehlerkorrektur für ein KI-System, Memo GEN-18, Forschungsstelle f. Informationswissenschaft und Künstliche Intelligenz, Univ. of Hamburg, 1983Google Scholar
  4. [4]
    Griffiths T.V., Patrick S.R.: On the relative Efficiencies of Context-Free Grammar Recognizers, CACM 8(5), 1965Google Scholar
  5. [5]
    Grandchamp J.-M., Letellier S.: Predictions in Deterministic Parsing: A Framework for Lexical Correction, in Proc. of ECAI’ 92, pp. 518-522, 1992Google Scholar
  6. [6]
    Hayes P.J., Mouradian G.V.: Flexible Parsing, AJCL, 7(4), 1981Google Scholar
  7. [7]
    Mellish C.S.: Some chart-based techniques for parsing ill-formed input, in Proc. ACL, 1989Google Scholar
  8. [8]
    Scheller A.: PARTIKO: Kontextsensitive, wissensbasierte Schreibfehleranalyse und-korrektur, Memo 35, Sonderforschungsbereich Künstliche Intelligenz, Universität des Saarlandes, D-6600 Saarbrücken, 1989Google Scholar
  9. [9]
    Veronis J.: Morphosyntactic correction in natural language interfaces, in Proc. of COLING, pp. 708-713, Budapest, 1988Google Scholar
  10. [10]
    Weischedel R.M., Sondheimer N.K.: Meta rules as a basis for processing ill-formed input, in AJCL, Vol. 9(3–4), 1983Google Scholar
  11. [11]
    Zajac C.: Design und Implementierung eines Compilers für ATN-Strukturen zur Realisierung eines fehlertoleranten und erwartungsgesteuerten Parsingprozesses, Master’s Thesis, Institut f. Softwaretechnik, Technical University of Vienna, 1992Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • K. Klebesits
    • 1
  • Th. Grechenig
    • 1
  1. 1.Department of Software EngineeringTechnical University of ViennaViennaAustria

Personalised recommendations