Effects of Medial Septal Lesions

Implications for Models of Hippocampal Function
  • John J. Boitano
  • Guido Bugmann
  • Raju S. Bapi
  • Susan L. McCabe
  • Carl P. J. Dokla
  • Michael J. Denham

Abstract

The modern reformulation (O’Keefe & Nadel, 1978) of Tolman’s (1948) cognitive map theory has largely been the result of two major findings which have provided the impetus for the direction of research over the last 2.5 decades; viz., rats with hippocampal lesions are deficient in negotiating such spatial memory tasks as the radial arm maze (Olton, and Samuelson, 1976) and the water maze (Morris, Garrud, Rawlins & O’Keefe, 1982); and the discovery of place cells in the hippocampus which fire when the rat is in a specific location or place field (O’Keefe, 1976). The cognitive map theory of hippocampal functioning suggests that this structure processes spatial information detailing the rat’s current position in the environment and provides the necessary computational skills allowing movement to a target goal (O’Keefe, 1989). The major neurotransmitter afferents to the hippocampus from the medial septal area and the associated vertical limb of the diagonal band of Broca (MSDB) include acetylcholine (Amaral & Kurz, 1985) projecting to widely distributed areas, and GABA (Freund & Antal, 1988) which innervate most of the GABAcontaining interneurons in the hippocampus. MSDB GABA also projects inhibition to the lateral septal area which in turn receives the output of the hippocampal glutamatergic pyramidal cells. Some of these cells additionally terminate in MSDB. Lateral septal neurons do not, as previously suggested project to MSDB (Leranth, Deller & Buzsaki, 1992) but do project reciprocally to the hypothalamus which returns afferents to the hippocampus and MSDB.

Keywords

Water Maze Entorhinal Cortex Reversal Learning Place Cell Theta Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaral, D. G., and Kurz, J. (1985). An analysis of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. Journal of Comparative Neurology, 240, 37–59.PubMedCrossRefGoogle Scholar
  2. Boitano, J. J., Dokla, C. P. J., Parker, S., Stalzer, K., Norelli, N., and Fiorini, M. (1990). Effect of medial septal lesions on activity and water maze performance. Society Jar Neuroscience Abstracts, 16, 1248.Google Scholar
  3. Boitano, J. J., Small, T., Fiorini, M. M., Belanger, S., Savinelli, T., and Dokla. C. P. J. (1992). Medial septal lesions impair spatial reversal learning. Society far Neuroscience Abstracts, 18, 1421.Google Scholar
  4. Burgess, N., Recce, M., and O’Keefe, J. (1994). A model of hippocampal function. New’al.Netnrorks, 7. 1065–1081.Google Scholar
  5. Freund, T. F., and Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336, 170–173.PubMedCrossRefGoogle Scholar
  6. Gogolak, G., Stumpf, C., Petsche, H., and Sterc, J. (1968). The firing-pattern of septal neurons and the form of the hippocampal theta wave. Brain Research, 7, 201–207.PubMedCrossRefGoogle Scholar
  7. Green, J. D., and Arduini, A. A. (1954). Hippocampal electrical activity in arousal. Journal of Neurophrsiology, 17, 533–557.Google Scholar
  8. Hasselmo, M. E., and Schnell, E. (1994). Laminar selectivity of the cholinergie suppression of synaptic transmission in rat hippocampal region CAI: Computational modeling and brain slice physiology. The Journal of Neuroscience, 14, 3898–3914.PubMedGoogle Scholar
  9. Hasselmo, M. E. (1995). A network model of hippocampus combining self-organization and associative memory function. Proceedings of the World Congress on Neural Networks WCNN’95, 2, 909–912.Google Scholar
  10. Leranth, C., Deller, T., and Buzsaki, G. (1992). Intraseptal connections redefined: lack of a lateral septum to medial septum path. Brain Research, 583, 1–11.PubMedCrossRefGoogle Scholar
  11. McNaughton, B. L., and Nadel, L. (1990) Hebb-Marr networks and the neurobiological representation of action in space. In M. A. Gluck, and D. E. Rumelhart (Eds.), Neuroscience and connectioni.st theory (pp. I - 63 ). Hillsdale, NJ, USA: Lawrence Erlbaum Associates.Google Scholar
  12. Mizumori, S. J. Y.. McNaughton, B. L., Barnes, C. A., and Fox, K. B. (1989). Preserved spatial coding in hippocampal CAI pyramidal cells during reversible suppression of CA3c output: evidence for pattern completion in hippocampus. Journal of Neuroscience, 9, 3915–3928.Google Scholar
  13. Morris, R. G. M., Garrud, P., Rawlins, J. N. P., and O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681–683.PubMedCrossRefGoogle Scholar
  14. O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Experimental Neurology, 51. 78–109.PubMedCrossRefGoogle Scholar
  15. O’Keefe, J. (1989). Computations the hippocampus might perform. In L. Nadel, L. A. Cooper, P. Culicover, and R. M. Harnish (Eds.). Neural Connections and mental computation (pp. 225–284 ). London, England: MIT Press.Google Scholar
  16. O’Keefe, J., and Nadel, L. (1978). The hippocampus as a cognitive map.. Clarendon Press. Oxford.Google Scholar
  17. Olton, D. S., and Samuelson, R. J. (1976). Remembrances of places past: spatial memory in rats. Journal of Experimental P.srchology: animal Behavior Processes, 2, 97–116.CrossRefGoogle Scholar
  18. Petsche, H., Stumpf, C., and Gogolak, G. (1962). The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. 1. The control of hippocampal arousal activity by the septum cells. Elechnencephalography and Clinical Nemophysiology, 14, 202–211.CrossRefGoogle Scholar
  19. Sutherland, R. J.. Kolb, B., and Whishaw, I. Q. (1982). Spatial mapping: Definitive disruption by hippocampal or medial frontal cortical damage in the rat. Neuroscience Letters. 31. 271–276.PubMedGoogle Scholar
  20. Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208.PubMedCrossRefGoogle Scholar
  21. Touretzky, D. S., and Redish, A. D. (1995). Landmark arrays and the hippocampal cognitive map. In L. Niklasson, and M. Boden (Eds.), Current trends in connectionism-Proceedings of the 1995 Swedish conference on connectionism (pp. 1–13 ). Hillsdale, NJ, USA: Lawrence Erlbaum Associates.Google Scholar
  22. Treves, A., and Rolls, E. T. (1992). Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus, 2, 189–200.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • John J. Boitano
    • 1
    • 2
  • Guido Bugmann
    • 2
  • Raju S. Bapi
    • 2
  • Susan L. McCabe
    • 2
  • Carl P. J. Dokla
    • 1
  • Michael J. Denham
    • 2
  1. 1.Department of PsychologyFairfield UniversityFairfieldUSA
  2. 2.Neurodynamics Research Group School of ComputingUniversity of PlymouthPlymouthUK

Personalised recommendations