A Local Circuit Integration Approach to Understanding Visual Cortical Receptive Fields

  • David C. Somers
  • Emanuel V. Todorov
  • Athanassios G. Siapas
  • Mriganka Sur

Abstract

The traditional concept of the receptive field (e.g., [4, 6]) holds that each portion of the receptive field (RF), in response to a stimulus element, has unitary (excitatory or inhibitory) influence on neuronal response. Here, we argue: i) receptive field components naturally have dual or vector (both excitatory and inhibitory) influence; ii) neuronal integration is better understood in terms of local cortical circuitry than single neurons. Using a large-scale model of primary visual cortex, we demonstrate that the net effect of a given stimulus element within either the classical or extraclassical RF can switch between excitatory and inhibitory as global stimulus conditions change. We analyze and explain these effects by constructing self-contained modules (via a novel technique) which capture local circuit interactions. These modules illustrate a new vector-based RF analysis which unifies notions of classical and extraclassical RF, treating long-range intracortical inputs on equal footing with thalamocortical inputs.

Keywords

Firing Rate Receptive Field Primary Visual Cortex Inhibitory Neuron Local Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bonds, A.B. Visual Neurosci. 6, 239–255 (1991).CrossRefGoogle Scholar
  2. [2]
    Douglas, R.J., Martin, K.A.C., Whitteridge, D. Neural Conip 1, 480–488 (1989).CrossRefGoogle Scholar
  3. [3]
    Gilbert, C.D., Wiesel, T. N. J. Neurosci. 3, 1116–1133 (1983).Google Scholar
  4. [4]
    Hartline, H.K. Am. J. Physiol. 130, 700–711 (1940).Google Scholar
  5. [5]
    Heeger, D.J. Visual Neurosci. 70, 181–197 (1992).CrossRefGoogle Scholar
  6. [6]
    Hubel, D.H., Wiesel, T.N. J Neurophysiol. 148, 574–591 (1959).Google Scholar
  7. [7]
    Kisvarday, Z.F., Martin, K.A.C., Freund, T.F., Magloczky, Z.F., Whitteridge, D., and Somogyi, D. Exp. Brain Res. 64, 541–552 (1986).PubMedCrossRefGoogle Scholar
  8. [8]
    Knierim, J.J., Van Essen, D.C. J. Neurophysiol. 67, 961–980 (1992).PubMedGoogle Scholar
  9. [9]
    Levitt, J.B., Lund J.S. Soc. Neurosci. Abstr. 20, 428 (1994).Google Scholar
  10. [10]
    Li, C.Y., Creutzfeldt, O.D. Pflugers Arch. 401, 304–314 (1984).PubMedCrossRefGoogle Scholar
  11. [11]
    Maffei, L., Fiorentini, A. Vision Res. 13, 1255–1267 (1973).PubMedCrossRefGoogle Scholar
  12. [12]
    McCormick, D.A., Connors, B.W., Lighthall, J.W., Prince, D.A. J. Neurophysiol. 54, 782–806 (1985).PubMedGoogle Scholar
  13. [13]
    McGuire, B.A., Gilbert, C.D., Rivlin, P.K., Wiesel, T. N. J. Comp. Neurol. 305, 370–392 (1991).CrossRefGoogle Scholar
  14. [14]
    Mountcastle, V.B. in The Mindful Brain (eds Edelman, G.M., Mountcastle, V.B. ) 7–50 ( MIT Press, Cambridge, MA, 1978 ).Google Scholar
  15. [15]
    Jones, J.P., Palmer, L.A. JNeurophysiol. 58, 1187–1211 (1987).Google Scholar
  16. [16]
    Rockland, K.S., Lund, J.S. Science 215, 1532–1534 (1982).PubMedCrossRefGoogle Scholar
  17. [17]
    Sengpiel, F., Baddeley, R.J, Freeman, T.C.B., Harrad, R.,, Blakemore, C. Soc. Neurosci. Abstr. 21, 1649 (1995).Google Scholar
  18. [18]
    Siapas, A.G., Todorov, E.V,, Somers, D.C. Soc. Neurosci. Abstr. 21, 1651 (1995).Google Scholar
  19. [19]
    Sillito, A.M., Grieve, K.L., Jones, H.E., Cudeiro, J.,, Davis, J. Nature, 378, 492 (1995).CrossRefGoogle Scholar
  20. [20]
    Ben-Yishai, R., Lev Bar-Or, R., Sompolinsky, H. Proc. Natl. Acad. Sci. U.S.A. 92, 3844–3848 (1995).PubMedCrossRefGoogle Scholar
  21. [21]
    Somers, D.C., Nelson, S.B., Sur, M. J Neurosci. 15, 5448–5465 (1995).PubMedGoogle Scholar
  22. [22]
    Stemmler, M., Usher, M., Niebur, E Science 269, 1877–1880, (1995).Google Scholar
  23. [23]
    Toth, L.J., Rao, S.C., Kim, D.-S., Somers, D., and Sur, M. Proc. Natl. Acad. Sci. USA, 93, 9869–9874 (1996).PubMedCrossRefGoogle Scholar
  24. [24]
    Tuckwell, H.G. Stochastic Processes in the Neurosciences (Soc. for Indust., Appl. Math., Philadelphia, PA, 1989 ).Google Scholar
  25. [25]
    White, E.L. Cortical Circuits 46–82 (Birkhauser, Boston, 1989 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • David C. Somers
    • 1
  • Emanuel V. Todorov
    • 1
  • Athanassios G. Siapas
    • 1
  • Mriganka Sur
    • 1
  1. 1.Department of Brain and Cognitive ScienceMITCambridgeUSA

Personalised recommendations