Synergism of Cellular and Network Mechanisms in Respiratory Pattern Generation

  • Ilya A. Rybak
  • Julian F. R. Paton
  • James S. Schwaber

Abstract

Our ultimate goal is to study the mechanisms of cross-level integration and synergy of network and intrinsic neuronal properties, and the role of this integration in the behavior of biological neural networks and systems. In the present work, we have selected a relatively simple mammalian system, which produces the respiratory rhythm and pattern, as an example for investigation of the above issues.

Keywords

Firing Pattern Respiratory Rhythm Respiratory Neuron Network Mechanism Synaptic Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. W. Richter and D. Ballantyne, D. A three phase theory about the basic respiratory pattern generator. In: M. Schlafke, H. Koepchen, and W. See (Eds.) Central Neurone Environment, Berlin: Springer, 1983, pp. 164–174.Google Scholar
  2. 2.
    D. Richter et. al., How is the respiratory rhythm generated? A model. Nests Pln:siol. Sri. I (1986) 109–112.Google Scholar
  3. 3.
    J. Champagnat and D. W. Richter, The roles of K+ conductance in expiratory pattern generation in anaesthetized cats. J. Phvsiol. Lund. 479 (1994) 127–138.Google Scholar
  4. 4.
    O. Pierrefiche et al.,Calcium-dependent conductances control neurones involved in termination of inspiration in cats. New - usci. Letters,184 (1995)101–104.Google Scholar
  5. D. W. Richter et al.,Calcium currents and calcium-dependent potassium currents in mammalian medullary respiratory neurons. J. Phvsiol. 470 (1993) 23–33.Google Scholar
  6. 6.
    S. M. Botros and E. N. Bruce, Neural network implementation of the three-phase model of respiratory rhythm generation. Biol. Ci’bern. 63 (1990)143–153.Google Scholar
  7. 7.
    J. A. Duffin, A model of respiratory rhythm generation. Neuroreport 2 (1991) 623–626.PubMedCrossRefGoogle Scholar
  8. 8.
    J. A. Duffin et al., Breathing rhythm generation: focus on the rostral ventrolateral medulla. News in Physiol. Sciences. 10 (1995) 133–140.Google Scholar
  9. 9.
    S. Geman and M. Miller, Computer simulation ofbrainstem respiratory activity. J. Appl. Phvsiol. 41 (1976) 931–938.Google Scholar
  10. 10.
    A. Gottschalk et al. Computational aspects of the respiratory pattern generator. Neural Comput. 6 (1994) 56–68.CrossRefGoogle Scholar
  11. 11.
    M. D. Ogilvie et al., A network model of respiratory rhythmogenesis. Am. J. Phvsiol. 263 (1992) R962 - R975.Google Scholar
  12. 12.
    J. E. Rubio, A new mathematical model of the respiratory center. Bull. Made. Biophrs. 34 (1972) 486–481.Google Scholar
  13. 13.
    J. Champagnat el al., Voltage-dependent currents in neurons of the nuclei of the solitary tract of rat brain-stem slices. PJlügers Arch. 406 (1986) 372–379.CrossRefGoogle Scholar
  14. 14.
    M. S. Dekin and P. A. Getting, In vitro characterization of neurons in the ventral part of the nucleus tractus solitarius. II. Ionic basis for repetitive firing patterns. J. Neurophvsiol. 58 (1987) 215–229.Google Scholar
  15. 15.
    J. R. Huguenard and D. A. McCormick, Vclamp and Cclamp. A Computational Simulation of Single Thalamic Relay and Cortical Pyramidal Neurons. Neural Simulation Instruction Manual, 1991.Google Scholar
  16. 16.
    D. W. Richter. Rhythmogenesis of respiratory movements. In: D. Jordan (Ed.) Central Control of Autonomic Nervous System. Harwood Academic, 1996 (in press).Google Scholar
  17. 17.
    F. Kreuter et al.. Morphological and electrical description of medullary respiratory neurons of the cat. L’fingers Arch. 372 (1977) 7–16. 1977.Google Scholar
  18. 18.
    M. I. Cohen, Neurogenesis of respiratory rhythm in the mammal. Phvsiol. Rev. 59 (1979) 1105–1173.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ilya A. Rybak
    • 1
  • Julian F. R. Paton
    • 2
  • James S. Schwaber
    • 1
  1. 1.DuPont Central ResearchE. I. du Pont de Nemours & Co.WilmingtonUSA
  2. 2.Department of Physiology, School of Medical SciencesUniversity of BristolBristolUK

Personalised recommendations