Skip to main content

Synergism of Cellular and Network Mechanisms in Respiratory Pattern Generation

  • Chapter
Computational Neuroscience

Abstract

Our ultimate goal is to study the mechanisms of cross-level integration and synergy of network and intrinsic neuronal properties, and the role of this integration in the behavior of biological neural networks and systems. In the present work, we have selected a relatively simple mammalian system, which produces the respiratory rhythm and pattern, as an example for investigation of the above issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. W. Richter and D. Ballantyne, D. A three phase theory about the basic respiratory pattern generator. In: M. Schlafke, H. Koepchen, and W. See (Eds.) Central Neurone Environment, Berlin: Springer, 1983, pp. 164–174.

    Google Scholar 

  2. D. Richter et. al., How is the respiratory rhythm generated? A model. Nests Pln:siol. Sri. I (1986) 109–112.

    Google Scholar 

  3. J. Champagnat and D. W. Richter, The roles of K+ conductance in expiratory pattern generation in anaesthetized cats. J. Phvsiol. Lund. 479 (1994) 127–138.

    CAS  Google Scholar 

  4. O. Pierrefiche et al.,Calcium-dependent conductances control neurones involved in termination of inspiration in cats. New - usci. Letters,184 (1995)101–104.

    Google Scholar 

  5. D. W. Richter et al.,Calcium currents and calcium-dependent potassium currents in mammalian medullary respiratory neurons. J. Phvsiol. 470 (1993) 23–33.

    Google Scholar 

  6. S. M. Botros and E. N. Bruce, Neural network implementation of the three-phase model of respiratory rhythm generation. Biol. Ci’bern. 63 (1990)143–153.

    Google Scholar 

  7. J. A. Duffin, A model of respiratory rhythm generation. Neuroreport 2 (1991) 623–626.

    Article  PubMed  CAS  Google Scholar 

  8. J. A. Duffin et al., Breathing rhythm generation: focus on the rostral ventrolateral medulla. News in Physiol. Sciences. 10 (1995) 133–140.

    Google Scholar 

  9. S. Geman and M. Miller, Computer simulation ofbrainstem respiratory activity. J. Appl. Phvsiol. 41 (1976) 931–938.

    CAS  Google Scholar 

  10. A. Gottschalk et al. Computational aspects of the respiratory pattern generator. Neural Comput. 6 (1994) 56–68.

    Article  Google Scholar 

  11. M. D. Ogilvie et al., A network model of respiratory rhythmogenesis. Am. J. Phvsiol. 263 (1992) R962 - R975.

    CAS  Google Scholar 

  12. J. E. Rubio, A new mathematical model of the respiratory center. Bull. Made. Biophrs. 34 (1972) 486–481.

    Google Scholar 

  13. J. Champagnat el al., Voltage-dependent currents in neurons of the nuclei of the solitary tract of rat brain-stem slices. PJlügers Arch. 406 (1986) 372–379.

    Article  CAS  Google Scholar 

  14. M. S. Dekin and P. A. Getting, In vitro characterization of neurons in the ventral part of the nucleus tractus solitarius. II. Ionic basis for repetitive firing patterns. J. Neurophvsiol. 58 (1987) 215–229.

    CAS  Google Scholar 

  15. J. R. Huguenard and D. A. McCormick, Vclamp and Cclamp. A Computational Simulation of Single Thalamic Relay and Cortical Pyramidal Neurons. Neural Simulation Instruction Manual, 1991.

    Google Scholar 

  16. D. W. Richter. Rhythmogenesis of respiratory movements. In: D. Jordan (Ed.) Central Control of Autonomic Nervous System. Harwood Academic, 1996 (in press).

    Google Scholar 

  17. F. Kreuter et al.. Morphological and electrical description of medullary respiratory neurons of the cat. L’fingers Arch. 372 (1977) 7–16. 1977.

    CAS  Google Scholar 

  18. M. I. Cohen, Neurogenesis of respiratory rhythm in the mammal. Phvsiol. Rev. 59 (1979) 1105–1173.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rybak, I.A., Paton, J.F.R., Schwaber, J.S. (1997). Synergism of Cellular and Network Mechanisms in Respiratory Pattern Generation. In: Bower, J.M. (eds) Computational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9800-5_76

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9800-5_76

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9802-9

  • Online ISBN: 978-1-4757-9800-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics