Skip to main content

An Investigation of Tonic Versus Phasic Firing Behavior of Medial Vestibular Neurons

  • Chapter
Computational Neuroscience

Abstract

The vestibular-ocular and vestibulo-spinal network provides the ability to hold gaze fixed on an object during head movement. Within that network, the second-order neurons of the media] vestibular nucleus (MVNn) compute internal representations of head movement velocity in the horizontal plane. In vivo, these neurons can be classified as either tonic (type A) or phasic (type B), depending on their responses to head accelerations. In this study we have investigated to what extend the MVNn intrinsic membrane properties, could contribute to their dynamics. Biophysical models of the two categories were examined under ramp, step, sinusoidal and random depolarizing stimulations. Two factors were found major: the activation of the delayed potassium current and the rate of calcium flux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Av-Ron E (1994) The role of a transient potassium current in a bursting neuron model. J Math Biol 33: 71–87.

    Article  PubMed  CAS  Google Scholar 

  2. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544.

    PubMed  CAS  Google Scholar 

  3. Serafin M, de Waele C, Khateb A, Vidal PP, Mühlethaler M (1991a) Medial vestibular nucleus in the guinea-pig I. Intrinsic membrane properties in brainstem slices. Exp Brain Res 84: 417–425.

    Google Scholar 

  4. Serafin M, de Waele C, Khateb A, Vidal PP, Mühlethaler M (199 lb) Medial vestibular nucleus in the guinea-pig II. Ionic basis of the intrinsic membrane properties in brainstem slices. Exp Brain Res 84: 426–433.

    Google Scholar 

  5. Av-Ron E, Parnas IT Segel LA (1991) A minimal biophysical model for an excitable and oscillatory neuron. Biol Cybern 65: 487–500.

    Article  PubMed  CAS  Google Scholar 

  6. Connor JA, Walter D, McKnown R (1977) Neural repetitive firing–modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. Biophys J 18: 81–102.

    Article  PubMed  CAS  Google Scholar 

  7. Quadroni R, Knöpfel T (1994) Compartmental models of type A and type B guinea pig medial vestibular neurons. J Neurophsiol 72: 1911–1924.

    CAS  Google Scholar 

  8. Rush M, Rinzel J (1995) The potassium A-current, low firing rates and rebound excitation in Hodgkin-Huxely models. Bull Math Biol 57: 899–929.

    PubMed  CAS  Google Scholar 

  9. Johnston AR, MacLeod NK, Dutia MB (1994) Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurones. J Physiol 481: 61–77.

    PubMed  CAS  Google Scholar 

  10. Press WH, Flannery BP, Teukolsky SA, Vetterlin WT (1988) Numerical recipes in C - The art of scientific computing. Cambridge University Press, Cambridge.

    Google Scholar 

  11. Smith CE, Goldberg JM (1986) A stochastic afterhyperpolarization model of repetitive activity in vestibular afferents. Biol Cybem 54: 41–51.

    Article  CAS  Google Scholar 

  12. Babalian A, Vibert N, Assie G, Serafin M, Mühlethaler M, Vidal, PP (1996) Central vestibular networks: functional characterization in the isolated, in vitro whole brain of guinea-pig. Neuroscience, submitted.

    Google Scholar 

  13. Vidal PP, Babalian A, Vibert N, Serafin M, Mühlethaler M (1996) In vivo-in vitro correlation in the central vestibular system: a bridge too far? In: New Directions in Vestibular Research, Higstein SM, Cohen B, Buttner Ennever JA (eds), Annals of the New York Academy of Sciences. In Press.

    Google Scholar 

  14. du Lac S, Lisberger SG (1995) Cellular processing of temporal information in medial vestibular nucleus neurons. J Neurosci 15: 8000–8010.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Av-Ron, E., Vidal, PP. (1997). An Investigation of Tonic Versus Phasic Firing Behavior of Medial Vestibular Neurons. In: Bower, J.M. (eds) Computational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9800-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9800-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9802-9

  • Online ISBN: 978-1-4757-9800-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics