Skip to main content

Nonlinear Dynamics in a Compound Central Pattern Generator

  • Chapter
  • 22 Accesses

Abstract

We studied the nonlinear dynamical behavior of several compound central pattern generators in the form of a half-center network oscillator coupled with an endogenous pacemaker, as exemplified by the respiratory motor generator in the mammalian neonate. Using pacemaker inputs with varying amplitudes, frequencies and phases, we demonstrated several pathologic oscillatory patterns including recurrent apnea (intermittent cessation of oscillation), quasi-periodic fluctuations and chaos. The apneic pattern can be attributed to decreased excitation (e.g., decreased overall chemoreceptor activity), unbalanced excitation (e.g., unbalanced tonic inputs to inspiratory and expiratory related neurons), or disparity between the intrinsic oscillatory frequency and pacemaker frequency. Results may have important implications in the pathogenesis of abnormal respiratory pattern associated with sudden infant death syndrome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arata, A., Onimaru, H., Homma, I. (1990) Respiration-related neurons in the ventral medulla of newborn rats in vitro. Brain Res. Bull. 24: 599–604.

    Google Scholar 

  2. Calabrese, R.L. (1995) Half-center oscillators underlying rhythmic movements. In: Arbib. M.A. ed. The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA. pp. 444–447.

    Google Scholar 

  3. Delcomyn, F. (1980) Neural basis of rhythmic behavior in animals. Science 210: 492–498.

    Article  PubMed  CAS  Google Scholar 

  4. Duffin, J. (1991) A model of respiratory rhythm generation. Neuroreport 2: 623–626.

    Article  PubMed  CAS  Google Scholar 

  5. Friesen, W.O. and Stent, G.S. (1977) Generation of a locomotory rhythm by a neural network with recurrent cyclic inhibition. Biol. Cybern. 28: 27–40.

    Google Scholar 

  6. Gottschalk, A., Ogilvie, M.D., Richter, D.W., and Pack, A. (1994) Computational aspects of the respiratory pattern generator. Neural Computation 6: 56–68.

    Article  Google Scholar 

  7. Kinney, H.C, Filiano, J.J., Sleeper, L.A., Mandell, F., Valdes-Dapena, M., and White. W.F. (1995) Decreased muscarinic receptor binding in the arcuate nucleus in sudden infant death syndrome. Science, 269: 1446–1450.

    Article  PubMed  CAS  Google Scholar 

  8. Koppel, N. (1988) Toward a theory of modelling central pattern generators. In: Cohen, A.H., Rossignol, S., and Grillner, S. eds. Neural Control of Rhythmic Movements in Vertebrates. John Willey & Sons, New York. pp. 369–413.

    Google Scholar 

  9. Matsugu, M., J. Duffin, C.-S. Poon (1997) submitted to J. of Comput. Neurosci.

    Google Scholar 

  10. Richter, D.W., Ballantyne, D., and Remmers. J.E. (1986) How is the respiratory rhythm generated ? A model. News Physiol. Sci. 1: 109–112.

    Google Scholar 

  11. Selverston, A. and Mazzoni, P. (1989) Flexibility of Computational Units in Invertebrate CPGs. In: Durbin, R., Miall, C., and Mitchison, G. eds. The Computing Neuron. Addison-Wesley Pub. Ltd., Reading, MA. pp. 205–228.

    Google Scholar 

  12. Skinner, F.K., Kopell, N., and Marder, E. (1994) Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. J. of Computational Neurosci. 1: 69–88.

    Article  CAS  Google Scholar 

  13. Smith, J.C., Ellenberger, K., Ballanyi, D., Richter, D.W., and Feldman, J.L. (1991) Pre-Bötzinger complex: a brain stem region that may generate respiratory rhythm in mammals. Science 254: 726–729.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, X.J. and Rinzel, J. (1992) Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons. Neural Computation 4: 84–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matsugu, M., Poon, CS. (1997). Nonlinear Dynamics in a Compound Central Pattern Generator. In: Bower, J.M. (eds) Computational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9800-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9800-5_65

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9802-9

  • Online ISBN: 978-1-4757-9800-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics