Modulating the Calcium Dependent Potassium Conductance in a Model of the Lamprey CPG

  • Anders Lansner
  • Jeanette Hellgren Kotaleski
  • Maria Ullström
  • Sten Grillner


The lamprey is a primitive water-living vertebrate that moves by means of undulatory swimming. It is of particular interest as an experimental model for the neural generation of locomotion [Grillner et al., 1995]. A major advantage of this system is that the motor pattern underlying swimming can be elicited in an isolated piece of spinal cord. Being one of the best characterized vertebrate neuronal systems, the lamprey spinal CPG has been the subject of a number of modelling and simulation studies.


Central Pattern Generator Rhythm Generation Reciprocal Inhibition Burst Generation Intersegmental Coordination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Grillner S., Deliagina T., Ekeberg O., El Manira A., Hill R. H., Lansner A., Orlovsky G. N., and Wallén P. (1995). “Neural networks that co-ordinate locomotion and body orientation in lamprey.” Trends Neurosci., 18 (6), 270–279.PubMedGoogle Scholar
  2. Fagerstedt P., Waller P., and Grillner S. (1995). “Activity of interneurons during fictive swimming in the lamprey.” 4th, IBRO Word Congress of Neuroscience, Kyoto, Japan, 346.Google Scholar
  3. Ekeberg O., Wallon P., Lansner A., Tråvén H., Brodin L., and Grillner S. (1991). “A computer based model for realistic simulations of neural networks. I: The single neuron and synaptic interaction.” Biol. Cvbern., 65, 81–90.CrossRefGoogle Scholar
  4. Wallén P., Ekeberg O., Lansner A., Brodin L., Tråvén H., and Sten G. (1992). “A Computer-Based Model for Realistic Simulations of Neural Networks. 11: The Segmental Network Generating Locomotor Rhythmicity in the Lamprey.” J. Neurophrsiol., 68, 1939–1950.Google Scholar
  5. Brodin L., Tråvén H., Lansner A., Wallen P., Ekeberg O., and Grillner S. (1991). “Computer simulation of NMethyl-D-Aspartate receptor induced membrane properties in a neuron model.” J. Neurophysiol., 66 (2), 473–484.PubMedGoogle Scholar
  6. Hellgren J., Grillner S., and Lansner A. (1992). “Computer Simulation of the Segmental Neural Network Generat- ing Locomotion in Lamprey by using Populations of Network Interneurons.“ Biol. Cvhern., 68, 1–13.CrossRefGoogle Scholar
  7. Tråvén H., Brodin L., Lansner A., Ekeberg O., Wallen P., and Grillner S. (1993). “Computer Simulations of NMDA and non-NMDA Receptor-Mediated Synaptic Drive: Sensory and Supraspinal Modulation of Neurons and Small Networks.” J. Neurophysiol., 70, 695–709.PubMedGoogle Scholar
  8. Ekeberg O. (1993). “A combined neuronal and mechanical model of fish swimming.” Biol. Crhern., 69, 363–374.Google Scholar
  9. Wadden T., Hellgren Kotaleski J., Lansner A., and Grillner S. (1997). “Intersegmental coordination in the lamprey: simulations using a network model without segmental boundaries.” Biol. Cybernetics. In press.Google Scholar
  10. Lansner A., Ekeberg O., and Grillner S. (1996). “Realistic modeling of burst generation and swimming in lamprey.” Neurons, Networks, and Motor Behavior, P. Stein, D. Stuart, S. Grillner, and A. Selverston, eds., Tucson, Arizona. To appear.Google Scholar
  11. Harris-Warrick R. M., and Cohen A. H. (1985). “Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord.” J. Exp. Biol., 116, 27–46.PubMedGoogle Scholar
  12. Wallén P., Buchanan J., Grillner S., Christenson J., and Hökfelt T. (1989). “The effects of 5-hydroxytryptamine on the afterhyperpolarisatíon, spike frequency regulation and oscillatory membrane properties in lamprey spinal cord neurons.” J. Neurophysiol., 61, 759–768.PubMedGoogle Scholar
  13. Christenson J., Wallén P., Brodin L., and Grillner S. (1991). “5-HT Systems in a Lower Vertebrate Model: Ultrastructure, Distribution, and Synaptic and Cellular Mechanisms.” In Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission, K. Fuxe and L. F. Agnati, eds., Raven Press, New York, 159–170.Google Scholar
  14. Mellen N., Kiemel T., and Cohen A. H. (1995). “Correlational analysis of fictive swimming in the lamprey reveals strong functional intersegmental coupling.” J. Neurophyssiol., 73 (3), 1020–1030.Google Scholar
  15. Ullström M., Lansner A., Hellgren Kotaleski J., and Grillner S. (1997). “Significance of modulated adaptation for rhythm generation and intersegmental co-ordination in lamprey.” In preparation.Google Scholar
  16. Cohen A. H., Ermentrout G. B., Kiemel T., Kopell N., Sigvardt K., and Williams T. L. (1992). “Modelling of Intersegmental Coordination in the Lamprey Central Pattern Generator for Locomotion.” Trenrls Neurosci., 15, 434–438.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Anders Lansner
    • 1
  • Jeanette Hellgren Kotaleski
    • 2
  • Maria Ullström
    • 2
  • Sten Grillner
    • 2
  1. 1.Department of Numerical Analysis and Computing ScienceKungl. Tekniska HögskolanStockholmSweden
  2. 2.Department of NeuroscienceKarolinska InstitutetStockholmSweden

Personalised recommendations