Cortical Circuits for Control of Voluntary Arm Movements

  • Paul Cisek
  • Daniel Bullock
  • Stephen Grossberg


A model of voluntary movement and motor proprioception is developed to address data from neurophysiology and psychophysics. Model elements correspond to cell types reported in cortical areas 4 and 5, basal ganglia, and spinal cord. The functional scope of the model includes voluntary movement, posture maintenance, exertion of forces against obstacles, passive relaxation, and load compensation. Movements are generated by composing complex commands in area 4, which effect gradual shifts of the limb’s equilibrium posture via descending pathways. Movement direction is computed in area 5 using a representation of limb position based upon corollary discharges and spindle feedback. Predictions are made regarding cell responses in novel experimental paradigms.


Phasic Cell Muscle Spindle Posterior Area Cortical Circuit Anterior Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bullock, P. Cisek, S. Grossberg, Center for Adaptive Systems Technical Report, Boston University CAS/CNS TR-95-019, (1996).Google Scholar
  2. 2.
    P. Cisek, S. Grossberg, D. Bullock, Center for Adaptive Systems Technical Report, Boston University CAS/CNS TR-96-035, (1996).Google Scholar
  3. 3.
    P. Cisek, Ph.D. Dissertation. Boston University (1996).Google Scholar
  4. 4.
    J. F. Kalaska, D. A. D. Cohen, M. L. Hyde, M. J. Prudhomme, J. Ne urosci. 9, 2080 (1989).Google Scholar
  5. 5.
    P. D. Cheney, E. E. Fetz, J. Neurophvsiol. 44, 773 (1980).Google Scholar
  6. 6.
    C. Fromm, S. P. Wise. E. V. Evarts, Exp. Brain Res. 54. 177 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    J. F. Kalaska, D. A. D. Cohen, M. J. Prudhomme. M. L. Hyde, Exp. Brain Res. 80, 351 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    D. J. Crammond, J. F. Kalaska, Erp. Brain Res. 76. 458 (1989).Google Scholar
  9. 9.
    J. F. Kalaska, D. J. Crammond, Cerebral Cortex 5. 410 (1995).PubMedCrossRefGoogle Scholar
  10. 10.
    P. Burbaud, C. Doegle, C. Gross, B. Bioulac, J. Neurophvxiol. 66, 429 ( 1991.Google Scholar
  11. 11.
    C. Fromm, E. V. Evarts, Brain Research 238, 186 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    E. E. Fetz, Behay. Brain Sci. 15. 679 (1992).Google Scholar
  13. 13.
    E. Bizzi, N. Hogan. F. A. Mussa-Ivaldi, S. F. Giszter. Behau Brain Sci. 15, 603 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Paul Cisek
    • 1
    • 2
  • Daniel Bullock
    • 1
  • Stephen Grossberg
    • 1
  1. 1.Department of Cognitive & Neural SystemsBoston UniversityBostonUSA
  2. 2.Département de PhysiologieUniversité de MontréalMontréalCanada

Personalised recommendations