Skip to main content

Spontaneous Replay of Temporally Compressed Sequences by a Hippocampal Network Model

  • Chapter
Book cover Computational Neuroscience

Abstract

Recent experimental evidence suggests that the hippocampus replays a temporally compressed version of recently-learned spatial sequence information during slow-wave sleep. This phase of sleep is characterized by intermittent episodes of high-frequency firing known as sharp waves. Here we partially characterize a simplified neural network model of hippocampal area CA3, based on integrate-and-fire cells, which is capable of recalling temporally compressed sequence information during brief periods of high activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DA August and W B Levy. Temporal sequence compression by a hippocampal network model. In INNS World Congress on Neural Networks,pages 1299–1303, Mahwah, NJ, 1996. Lawrence Erlbaum.

    Google Scholar 

  2. T V P Bliss and T Lorno. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol., 232: 331–356, 1973.

    PubMed  CAS  Google Scholar 

  3. G Buzsaki. Hippocampal sharp waves: Their origin and significance. Brain Res., 398: 242–252, 1986.

    Article  PubMed  CAS  Google Scholar 

  4. G Buzsaki. Two-stage model of memory trace formation: A role for ‘noisy’ brain states. Neuroscience, 31 (3): 551–570, 1989.

    Article  PubMed  CAS  Google Scholar 

  5. G Buzsaki, Z Horvath, R Urioste, J Hetke, and K Wise. High-frequency network oscillation in the hippocampus. Science, 256: 1025–1027, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. ME Hasselmo, E Schnell, and E Barkai. Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J Neurosci., 15(71): 5249–5262, 1995.

    CAS  Google Scholar 

  7. N Ishizuka, J Weber, and DG Amaral. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol., 295: 580–623, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. WB Levy and O Steward. Synapses as associative memory elements in the hippocampal formation. Brain Res., 175: 233–245, 1979.

    Article  PubMed  CAS  Google Scholar 

  9. WB Levy and O Steward. Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience, 8 (41): 791–797, 1983.

    Article  PubMed  CAS  Google Scholar 

  10. H Markram and MV Tsodyks. Redistribution of synaptic efficacy between neocortical pyramidal cells. Nature, 382: 807–810, 1996.

    Article  PubMed  CAS  Google Scholar 

  11. D Marr. Simple memory: a theory for archicortex. Phil. Trans. Royal. Soc. Lond., 262: 23–81, 1971.

    Article  CAS  Google Scholar 

  12. R Miles and RKS Wong. Single neurones can initiate synchronized population discharge in the hippocampus. Nature, 306: 371–373, 1983.

    Article  PubMed  CAS  Google Scholar 

  13. AA Minai and WB Levy. The dynamics of sparse random networks. Biol. Cybern., 70: 177–187, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. M Nakao, K Watanabe, T Takahashi, Y Mizutani, and M Yamamoto. Structural properties of network attractor associated with neuronal dynamics transition. In Proceedings of the International Joint Conference of Neural Networks, volume 3, pages 529–534. Inst. of Electrical and Electronic Engineers, 1992.

    Google Scholar 

  15. J O’Keefe and L Nadel. The Hippoccnnpus as a Cognitive Map. Oxford: Clarendon Press, London, 1978.

    Google Scholar 

  16. C Pavlides and J Winson. Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes..1 Neurosci., 9 (8): 2907–2918, 1989.

    CAS  Google Scholar 

  17. ET Rolls. Functions of neuronal networks in the hippocampus and cerebral cortex in memory. In R M J Cotterill, editor, Models of Brain Function, pages 15–33. Cambridge Univ. Press, 1989.

    Google Scholar 

  18. WE Skaggs and B L McNaughton. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271: 1870–1873, 1996.

    Article  PubMed  CAS  Google Scholar 

  19. SS Suzuki and GK Smith, Spontaneous EEG spikes in the normal hippocampus. 1. Behavioral correlates. laminar profiles and bilateral synchrony. Electroenceph. Clin. Neurophys., 67 (41): 348–359, 1987.

    Article  CAS  Google Scholar 

  20. M Usher, M Stemmler, C Koch, and Z Olami. Network amplification of local fluctuations causes high spike rate variability, fractal firing patterns and oscillatory local field potentials. Neural Computation, 6 (5): 795–836, 1994.

    Article  Google Scholar 

  21. MA Wilson and BL McNaughton. Reactivation of hippocampal ensemble memories during sleep. Science. 265: 676–679, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. S Zola-Morgan and LR Squire. The primate hippocampal formation: Evidence for a time-limited role in memory storage. Science, 250: 288–290, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

August, D.A., Levy, W.B. (1997). Spontaneous Replay of Temporally Compressed Sequences by a Hippocampal Network Model. In: Bower, J.M. (eds) Computational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9800-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9800-5_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9802-9

  • Online ISBN: 978-1-4757-9800-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics