Activity-Dependent Self-Organization of Orientation Preference Predicts a Transient Overproduction of Pinwheels during Visual Development

  • F. Wolf
  • T. Geisel

Abstract

The pinwheel-like arrangement of iso-orientation domains around orientation centers is a ubiquitous structural element of orientation preference maps in primary visual cortex. Here we investigate how activity-dependent mechanisms constrain the way in which orientation centers can form during visual development. We consider the dynamics of a large class of models for the activity-dependent self-organization of orientation preference maps. We prove for this class of models that the density of orientation centers which proliferate as the map arises from a homogeneous state exhibits a universal lower bound. Due to topological constraints the density of orientation centers can only change by discrete creation and annihilation events. Consequently activity-dependent self-organization of orientation preference implies that low densities of orientation centers develop through an initial overproduction and subsequent annihilation of pinwheels. Monitoring the density of orientation centers during development therefore offers a powerful novel approach to test whether orientation preference arises by activity-dependent mechanisms or is genetically predetermined.

Keywords

Orientation Preference Nonlinear Phase Orientation Selectivity Gaussian Random Field Visual Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Grinvald, A., Frostig, R. D., Lieke, E., and Hildesheimer, R. Physiological Reviews 68, 1285–1365 (1988).PubMedGoogle Scholar
  2. [2]
    Swindale, N. Network: Computation in Neural Systems 7, 161–247 (1996).CrossRefGoogle Scholar
  3. [3]
    Ts’o, D. Y., Frostig, R. D., Lieke, E. E., and Grinvald, A. Science 249, 417–249 (1990).PubMedCrossRefGoogle Scholar
  4. [4]
    Bonhoeffer, T. and Grinvald, A. Nature 353, 429–431 (1991).PubMedCrossRefGoogle Scholar
  5. [5]
    Bonhoeffer, T., Kim, D.-S., Malonek, D., Shoham, D., and Grinvald, A. Europ. J. Neuroscience 7, 1973–1988 (1995).CrossRefGoogle Scholar
  6. [6]
    Blasdel, G. G. J. Neuroscience 12, 3139–3161 (1992).Google Scholar
  7. [7]
    Blasdel, G., Livingstone, M., and Hubel, D. In Soc. Neurosci. Abstracts, volume 12, 1500. Society for Neuroscience, (1993).Google Scholar
  8. [8]
    Weliky, M. and Katz, L. C. J Neuroscience 14, 7291–7305 (1994).Google Scholar
  9. [9]
    Fitzpatrick, D., Schofield, B. R., and Strote, J. In Soc. Neurosci. Abstracts, 837. Society for Neuroscience, (1994).Google Scholar
  10. [10]
    Albus, K. In Models of the Visual Cortex, Rose, D. and Dobson, V., editors, chapter 51, 485–491. Wiley (1985).Google Scholar
  11. [11]
    Obermayer, K. and Blasdel, G. G. J. Neuroscience 13, 4114129 (1993).Google Scholar
  12. [12]
    Miller, K. D. In Models of Neural Networks III, Domany, E., van Hemmen, J., and Schulten, K., editors. Springer-Verlag, NY (1995).Google Scholar
  13. [13]
    Adler, R. J. The Geometry of Random Fields. John Wiley, NY, (1981).Google Scholar
  14. [14]
    Halperin, B. I. In Physics of Defects, Les Houches, Session XXXV 1980, Balian, R., Kléman, M., and Poirier, J.-P., editors ( North-Holland, Amsterdam, 1981 ).Google Scholar
  15. [15]
    Erwin, E., Obermayer, K., and Schulten, K. Neural Computation 7, 425–468 (1995).PubMedCrossRefGoogle Scholar
  16. [16]
    Wiesel, T. N. and Hubel, D. H. J. Comp. Neurol. 158, 307–318 (1974).PubMedCrossRefGoogle Scholar
  17. [17]
    Stryker, M. P. In Neuroscience Res. Prog. Bull., Vol. 15, No.3, chapter VII, 454–462. MIT Press (1977).Google Scholar
  18. [18]
    Changeux, J.-P. and Danchin, A. Nature 264, 705–712 (1976).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • F. Wolf
    • 1
  • T. Geisel
    • 1
  1. 1.Max-Planck Institut für StrömungsforschungSFB Nichtlineare Dynamik Universität FrankfurtGöttingenGermany

Personalised recommendations