Robust Parameter Selection for Compartmental Models of Neurons Using Evolutionary Algorithms

  • Rogene M. Eichler West
  • George L. Wilcox


Many modeling efforts have met skepticism among experimental neuroscientists largely because of a perception that system parameters are selected arbitrarily. In particular, a lack of high resolution data describing the spatial distribution of voltage-gated and/or calcium-dependent channels has rendered compartmental models suspect of representing singular solutions. On the other hand, a robust manifold of solutions may exist in nature and account for the behavioral repertoire of the biological system. We demonstrate the use of Evolutionary Algorithms (EAs) for the robust fitting of nonlinear channel distributions to experimental observations using the model and kinetics of Traub et al (1991). These results represent a successful method for optimizing parameters in high dimensional (> 100) nonlinear systems.


Recombination Operator Parameter String Extinction Threshold Soma Compartment Nonlinear Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhalla, U. S., Bilitch, D. H.. and Bower. J. M. TINS 15 (11), 453–458 (1992).Google Scholar
  2. Elliott, E.M., Malouf, A.T., and Catterall, W.A. J. Neurosci. 15 (10), 6433–6444 (1995).PubMedGoogle Scholar
  3. Forrest, S. Science 261. 872–878 (1993).PubMedCrossRefGoogle Scholar
  4. Hablitz, J. J. and Johnston, D. Cell. and Molec. Neurobio. 1 (4), 325–334 (1981).Google Scholar
  5. Holland, J. H. Adaptation in Natural and Artificial Systems. (Ann Arbor. The University of Michigan. (1975).Google Scholar
  6. Maletic-Savatic, M., Lenn, N.J., Trimmer, J.S. J. Neurosci. 15(5). 3840 3851 (1995).PubMedGoogle Scholar
  7. Mills, L.R., Niesen, C.E., So, A.P., Carlen. P.L., Spigelman. I., and Jones, O.T, I. Neurosci. 14 (11), 6815–6824 (1994).Google Scholar
  8. Regehr, W. G. and Tank, D. W. J. Neurosci. 12 (11), 4202–4223 (1992).PubMedGoogle Scholar
  9. Spruston, N., Schiller, Y., Stuart, G., Sakmann, B. Science 268, 297–300 (1995).PubMedCrossRefGoogle Scholar
  10. Traub, R. D., Wong, R. K. S., Miles, R., and Michelson, H. J. Neurophysiol. 66. 635 650 (1991).Google Scholar
  11. Wong, R. K. S. and Prince, D. A. Brain Res. 159, 385–390 (1978).CrossRefGoogle Scholar
  12. Wong RKS, Prince DA (1981) J. Neurophysiol. 45: 86–97.PubMedGoogle Scholar
  13. Wong, R. K. S., Prince, D. A. and Basbaum, A. I. Proc. Natl. Acad. Sci. 76 (2). 986–990 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Rogene M. Eichler West
    • 1
    • 3
  • George L. Wilcox
    • 2
    • 4
  1. 1.Theoretical Neurobiology Born Bunge FoundationUniversitaire Instelling Antwerpen—UIAAntwerpBelgium
  2. 2.Department of PharmacologyUniversity of MinnesotaMinneapolisUSA
  3. 3.Minnesota Supercomputer Institute and the Graduate Program in NeuroscienceUniversity of MinnesotaUSA
  4. 4.Minnesota Supercomputer Institute, the Graduate Program in Neuroscience, and the Department of PharmacologyUniversity of MinnesotaUSA

Personalised recommendations