Skip to main content

Cortico-Cortical Dynamics and Learning during Visual Recognition: A Computational Model

  • Chapter
  • 26 Accesses

Abstract

A ubiquitous feature of the neocortex is the reciprocity of connections between its many distinct areas: if area A projects to area B, then area B almost invariably projects to area A [5, 22]. While the role of the feedforward projections in facilitating tasks such as visual recognition is generally well-acknowledged, the precise computational role of the corresponding feedback projections has remained relatively unclear (cf. [1] p. 23).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Churchland and T. Sejnowski. The Computational Brain. Cambridge, MA: MIT Press, 1992.

    Google Scholar 

  2. P. Dayan, G.E. Hinton, R.M. Neal, and R.S. Zemel. The Helmholtz machine. Neural Computation, 7: 889–904, 1995.

    Article  PubMed  CAS  Google Scholar 

  3. R. Desimone and L.G. Ungerleider. Neural mechanisms of visual processing in monkeys. In F. Boller and J. Grafman, editors, Handbook of Neuropsychology, volume 2, chapter 14, pages 267–299. New York: Elsevier, 1989.

    Google Scholar 

  4. R.J. Douglas, K.A.C. Martin, and D. Whitteridge. A canonical microcircuit for neocortex. Neural Computation, 1: 480–488, 1989.

    Article  Google Scholar 

  5. D.J. Felleman and D.C. Van Essen. Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1:1–47, 1991.

    Google Scholar 

  6. J.L. Gallant, C.E. Connor, H. Drury, and D.C. Van Essen. Neural responses in monkey visual cortex during free viewing of natural scenes: Mechanisms of response suppression. Invest. Ophthalmol. Vis. Sci., 36: 1052, 1995.

    Google Scholar 

  7. S. Grossberg. How does the brain build a cognitive code? Psychological Review, 87, 1980.

    Google Scholar 

  8. G.F. Harpur and R.W. Prager. Development of low-entropy coding in a recurrent network. Network, 7: 277–284, 1996.

    Article  PubMed  CAS  Google Scholar 

  9. E. Harth, K.P. Unnikrishnan, and A.S. Pandya. The inversion of sensory processing by feedback pathways: A model of visual cognitive functions. Science, 237: 184–187, 1987.

    Article  PubMed  CAS  Google Scholar 

  10. R.E. Kalman. A new approach to linear filtering and prediction theory. Trans. ASME J Basic Eng., 82: 35–45, 1960.

    Article  Google Scholar 

  11. l] R.E. Kalman and R.S. Bucy. New results in linear filtering and prediction theory. Trans. ASME J. Basic Eng., 83: 95–108, 1961.

    Article  Google Scholar 

  12. M. Kawato, H. Hayakawa, and T. Inui. A forward-inverse optics model of reciprocal connections between visual cortical areas. Network, 4: 415–422, 1993.

    Article  Google Scholar 

  13. P.S. Maybeck. Stochastic Models, Estimation, and Control. New York: Academic Press, 1979.

    Google Scholar 

  14. D. Mumford. On the computational architecture of the neocortex. Il. The role of cortico-cortical loops. Biological Cybernetic’s, 66: 241–251, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. B.A. Olshausen and D.J. Field. Emergence of simple-cell receptive field properties by leaming a sparse code for natural images. Nature, 381: 607–609, 1996.

    Article  PubMed  CAS  Google Scholar 

  16. T. Poggio. A theory of how the brain might work. In Cold Spring Harbor Symposia on Quantitative Biology, pages 899–910. Cold Spring Harbor Laboratory Press, 1990.

    Google Scholar 

  17. R.P.N. Rao and D.H. Ballard. A class of stochastic models for invariant recognition, motion, and stereo. Technical Report 96. 1, National Resource Laboratory for the Study of Brain and Behavior, Department of Computer Science, University of Rochester, June 1996.

    Google Scholar 

  18. R.P.N. Rao and D.H. Ballard. Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Computation (in press). Also, Technical Report 96.2, National Resource Laboratory for the Study of Brain and Behavior, Department of Computer Science, University of Rochester, 1996.

    Google Scholar 

  19. R.P.N. Rao and D.H. Ballard. The visual cortex as a hierarchical predictor. Technical Report 96.4, National Resource Laboratory for the Study of Brain and Behavior, Department of Computer Science, University of Rochester, September 1996.

    Google Scholar 

  20. R.P.N. Rao, G.J. Zelinsky, M.M. Hayhoe, and D.H. Ballard. Modeling saccadic targeting in visual search. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 830–836. Cambridge, MA: MIT Press, 1996.

    Google Scholar 

  21. J. Rissanen. Stochastic Complexity in Statistical Inquire. Singapore: World Scientific, 1989.

    Google Scholar 

  22. K.S. Rockland and D.N. Pandya. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Research, 179: 3–20, 1979.

    Article  PubMed  CAS  Google Scholar 

  23. W. Softky. Could time-series prediction assist visual processing? Soc. Neuro. Abate, 21: 1499, 1995.

    Google Scholar 

  24. S. Ullman. Sequence seeking and counterstreams: A model for bidirectional information flow in the cortex. In C. Koch and J.L. Davis, editors, Large-Scale Neuronal Theories of the Brain, pages 257–270. Cambridge, MA: MIT Press, 1994.

    Google Scholar 

  25. D.C. Van Essen. Functional organization of primate visual cortex. In A. Peters and E.G. Jones, editors, Cerebral Cortex, volume 3, pages 259–329. Plenum, 1985.

    Google Scholar 

  26. D.C. Van Essen, C.H. Anderson, and B.A. Olshausen. Dynamic routing strategies in sensory, motor, and cognitive processing. In C. Koch and J.L. Davis, editors, Large-Scale Neuronal Theories of the Brain, pages 271–299. Cambridge, MA: MIT Press, 1994.

    Google Scholar 

  27. R.S. Zemel. A Minimum Description Length Framework for Unsupervised Learning. PhD thesis, Department of Computer Science, University of Toronto, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh P. N. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rao, R.P.N., Ballard, D.H. (1997). Cortico-Cortical Dynamics and Learning during Visual Recognition: A Computational Model. In: Bower, J.M. (eds) Computational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9800-5_122

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9800-5_122

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9802-9

  • Online ISBN: 978-1-4757-9800-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics