Skip to main content

Tailoring the R-Matrix Approach for Application to Polyatomic Molecules

  • Chapter
Book cover Computational Methods for Electron—Molecule Collisions

Abstract

In this chapter a concept will be presented for applying the R-matrix formalism to low-energy electron scattering off molecular systems with more than two atoms. A detailed description of this concept is given by Nestmann et al,1 Pfingst et al2 and Nestmann et al;3 here we will restrict ourselves to an overview.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nestmann BM, Nesbet RK and Peyerimhoff SD, J. Phys. B: At. Mol. Phys., 24, 5133 (1991).

    Article  ADS  Google Scholar 

  2. Pfmgst K, Nestmann BM and Peyerimhoff S, J. Phys. B: At. Mol. Opt. Phys., in press.

    Google Scholar 

  3. Nestmann BM, Pfmgst K and Peyerimhoff SD, J. Phys. B: At. Mol. Opt. Phys., in press.

    Google Scholar 

  4. Kaufmann K, Baumeister W and Jungen M, J. Phys. B: At. Mol. Opt. Phys., 22, 2223 (1989).

    Article  ADS  Google Scholar 

  5. Nestmann BM and Peyerimhoff SD, J. Phys. B: At. Mol. Phys., 23, L773 (1990).

    Article  ADS  Google Scholar 

  6. Scheerbaum RR, Shakin CM and Thaler RM, Ann. Phys. NY, 76, 333 (1973).

    Article  ADS  Google Scholar 

  7. Nestmann BM, Krumbach V and Peyerimhoff SD, Phys. Rev. A, 42, 5406 (1990).

    Article  ADS  Google Scholar 

  8. Morrison MA, Saha BC and Gibson TL, Phys. Rev. A, 36, 3682 (1987).

    Article  ADS  Google Scholar 

  9. Gillan CJ, Noble CJ and Burke PG, J. Phys. B: At. Mol. Opt. Phys. 21, L53 (1988).

    Article  ADS  Google Scholar 

  10. Meyer HD, Phys. Rev. A, 34, 1797 (1986).

    Article  ADS  Google Scholar 

  11. Berman M and Domcke W, Phys. Rev. A, 29, 2485 (1984).

    Article  ADS  Google Scholar 

  12. Burke PG, Noble CJ and Salvini S, J. Phys. B: At. Mol. Phys., 16, L113 (1983).

    Article  ADS  Google Scholar 

  13. Schneider BI and Collins LA, Phys. Rev. A, 30, 95 (1984).

    Article  ADS  Google Scholar 

  14. Brode RB, Phys. Rev., 25, 636 (1925).

    Article  ADS  Google Scholar 

  15. Brüche E, Ann. Phys. Lpz, 83, 1065 (1927).

    Article  Google Scholar 

  16. Brüche E, Ann. Phys. Lpz, 4, 387 (1930).

    Article  Google Scholar 

  17. Ramsauer C and Collath R, Ann. Phys. Lpz, 4, 91 (1930).

    Article  ADS  Google Scholar 

  18. Barbarito E, Basta M and Caliechio M, J. Chem. Phys., 71, 54 (1979).

    Article  ADS  Google Scholar 

  19. Tanaka H, Okada T, Boesten L, Suzuki T, Yamanoto T and Kubo M, J. Phys. B: At. Mol. Phys, 15, 3305 (1982).

    Article  ADS  Google Scholar 

  20. Ferch J, Granitza B and Raith W, J. Phys. B: At. Mol. Phys., 18, L445 (1985).

    Article  ADS  Google Scholar 

  21. Jones RK, J. Chem. Phys., 82, 5424 (1985).

    Article  ADS  Google Scholar 

  22. Lohmann B and Buckman SJ, J. Phys. B: At. Mol. Phys., 19, 2565 (1986).

    Article  ADS  Google Scholar 

  23. Sohn W, Kochern K-H, Scheuerlein K-M, Jung K and Ehrhardt H, J. Phys. B: At. Mol. Phys., 19, 3625 (1986).

    Article  ADS  Google Scholar 

  24. Jain A, Phys. Rev. A, 34, 954 (1986).

    Article  ADS  Google Scholar 

  25. Gianturco FA and Scialla S, J. Phys. B: At. Mol. Phys., 20, 3171 (1987).

    Article  ADS  Google Scholar 

  26. O’Connel JK and Lane NF, Phys. Rev. A, 37, 1893 (1983).

    Article  Google Scholar 

  27. Padial NT and Norcross DW, Phys. Rev. A, 29, 1742 (1984).

    Article  ADS  Google Scholar 

  28. Gianturco FA, Jain A and Pantano LC, J. Phys. B: At. Mol. Phys., 20, 571 (1986).

    Article  ADS  Google Scholar 

  29. Lima MAP, Gibson TL, Huo WM and McKoy V, Phys. Rev. A, 32, 2696 (1985).

    Article  ADS  Google Scholar 

  30. Lima MAP, Watari K and McKoy V, Phys. Rev. A, 39, 4312 (1989).

    Article  ADS  Google Scholar 

  31. McCurdy CW and Rescigno TN, Phys. Rev. A, 39, 4487 (1989).

    Article  ADS  Google Scholar 

  32. Lengsfield III BH, Rescigno TN and McCurdy CW, Phys. Rev. A, 44, 4296 (1991).

    Article  ADS  Google Scholar 

  33. Landolt Börnstein, Zahlenwerte und Funktionen (Berlin: Springer Verlag) 6. Auflage, vol 1, part 3, p 511 (1951).

    Google Scholar 

  34. O’Malley TF, Spruch L and Rosenberg L, J. Math. Phys., 2, 491 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. O’Malley TF, Phys. Rev., 130, 1020 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  36. Thompson DG, Proc. R. Soc. London, 294, 160 (1966).

    Article  ADS  Google Scholar 

  37. Dunning TH, J. Chem. Phys., 53, 2823 (1970).

    Article  ADS  Google Scholar 

  38. Cade PE, Sales KD, Wahl AC, J. Chem. Phys., 44, 1973 (1966).

    Article  ADS  Google Scholar 

  39. Nesbet RK, Noble CJ, Morgan LA, and Weatherford CA, J. Phys. B: At. Mol. Phys., 17, L891 (1984).

    Article  ADS  Google Scholar 

  40. Buenker RJ and Peyerimhoff SD, Theor. Chim. Acta, 35, 33 (1974).

    Article  Google Scholar 

  41. Buenker RJ and Peyerimhoff SD, Theor. Chim. Acta, 39, 217 (1975).

    Article  Google Scholar 

  42. Buenker RJ and Peyerimhoff SD, New Horizons in Quantum Chemistry ed PO Löwdin and B Pullman (Dortrecht: Reidei) p 183 (1983).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pfingst, K., Nestmann, B.M., Peyerimhoff, S.D. (1995). Tailoring the R-Matrix Approach for Application to Polyatomic Molecules. In: Huo, W.M., Gianturco, F.A. (eds) Computational Methods for Electron—Molecule Collisions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9797-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9797-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9799-2

  • Online ISBN: 978-1-4757-9797-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics