Electron Collisions with the \( He_2^ + \) Cation

  • Brendan M. McLaughlin
  • Charles J. Gillan

Abstract

This chapter illustrates one application of the R-matrix approach to electron collisions with diatomic molecules. The \( He_2^ + \) cation is the chosen target and the scattering equations are solved within a two state approximation in which those target states are represented by a complete configuration interaction (CI) expansion. Our work is one of the latest in a long line of applications of R-matrix theory to the field of electron-diatomic molecule collisions; the field began with the paper by Schneider on e − H2, work which was soon extended to the more complex e − F2 interaction.2 Only the details of applying R-matrix theory to the e \( He_2^ + \) system are presented here because the theoretical aspects of the method have already been outlined in chapter 1 and the specific computational implementation that was used in the previous chapter.

Keywords

Rydberg State Electron Collision Full Configuration Interaction Radiative Association Photodissociation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. I. Schneider, Phys. Rev. A, 11, 1957 (1975), Chem. Phys. Lett., 31 237 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    B. I. Schneider and P. J. Hay, Phys. Rev. A, 13, 2049 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    M. W. Muller, W. Bassert, M. W. Ruf, H. Hotop, W. Meyer and M. Movre, Z. Phys. D., 21, 89 (1991)ADSCrossRefGoogle Scholar
  4. R. J. Bieniek, M. W. Muller and M. Movres, J. Phys. B., 23, 4521 (1990).ADSCrossRefGoogle Scholar
  5. 4.
    P. E. Siska, Rev. Mod. Phys., 65, 337 (1993)ADSCrossRefGoogle Scholar
  6. A. Niehaus, Phys. Rep. 186, 149 (1990)ADSCrossRefGoogle Scholar
  7. A. N. Klucharev and V. Vujnovic, Phys. Rep. 185, 55 (1990)ADSCrossRefGoogle Scholar
  8. and J. Weiner, F. Masonou-Seews and A. Giusti-Suzor, Adv. At. Mol. Opt. Phys., 26, 209 (1990)ADSCrossRefGoogle Scholar
  9. P. Monichicourt, P. Pradel, D. Dubreuil and J. J. Laucagne, Phys. Rev. A, 40, 1147 (1989)ADSCrossRefGoogle Scholar
  10. P. Monichicourt, P. Pradel, D. Dubreuil and J. J. Laucagne, Phys. Rev. A, 40, 6706 (1989).ADSCrossRefGoogle Scholar
  11. 5.
    A. Dalgarno, Planet. Space Sci., 40, 1583 (1993).ADSCrossRefGoogle Scholar
  12. 6.
    V. A. Ivanov and Yu. E. Skoblo, Opt. Spectrosc. (USSR), 65, 445 (1988).ADSGoogle Scholar
  13. 7.
    J. B. A. Mitcheu, Phys. Rep., 186, 240 (1990).Google Scholar
  14. 8.
    S. L. Guberman, Physics of Ion-Ion and Electron-Ion Collisions, ed. by F. Brouillard and J. W. McGowan, (Plenum Press, New York and London 1983) 167.CrossRefGoogle Scholar
  15. 9.
    D. C. Lorents, N. Bjerre and H. Helm, Bull. Amer. Phys. Soc, 35, 1168 (1990).Google Scholar
  16. 10.
    A. Metropoulos, Y. Li, G. Hirsch and R. J. Buenker, Chem. Phys. Lett., 198, 266 (1992).ADSCrossRefGoogle Scholar
  17. 11.
    B. M. McLaughlin, C. J. Gillan, P. G. Burke and J. S. Dahler, Atomic and Molecular Physics, ed. C. Cisneros, T. J. Morgan and I. Alvarez, (World Scientific, New Jersey and London 1991) 161.Google Scholar
  18. 12.
    P. Stancil, J. Babb and A. Dalgarno, Ap. J., 414, 672 (1993).ADSCrossRefGoogle Scholar
  19. 13.
    P. Stancil, Ap. J., in press (1994), and references therein.Google Scholar
  20. 14.
    A. C. Wahl and G. Das, Modern Theoretical Chemistry: Vol. 3, Methods of Electronic Structure Theory, Edited by H. F. Schaefer III, (Plenum, New York and London, 1977) 51.CrossRefGoogle Scholar
  21. 15.
    B. M. McLaughlin, C. J. Gillan, P. G. Burke and J. S. Dahler, Phys. Rev. A, 47, 1967 (1993).ADSCrossRefGoogle Scholar
  22. 16.
    C. J. Gillan, B. M. McLaughlin, P. G. Burke and J. S. Dahler, Bull. Amer. Phys. Soc, 35, 1140 (1990)Google Scholar
  23. B. M. McLaughlin, C. J. GiUan, P. G. Burke and J. S. Dahler, Minnesota Supercomputer Institute Report, 90/182 (1990).Google Scholar
  24. 17.
    S. E. Branchett and J. Tennyson, Phys. Rev. Lett. 64, 2889 (1990).ADSCrossRefGoogle Scholar
  25. 18.
    P. N. Reagen, J. C. Browne and F. A. Matsen, Phys. Rev., 132, 304 (1963).ADSCrossRefGoogle Scholar
  26. 19.
    B. M. McLaughlin, C. J. GiUan, P. G. Burke and J. S. Dahler, Nucl. Instrum. & Methods B, 53, 518 (1991).ADSCrossRefGoogle Scholar
  27. 20.
    R. McWeeny and B. T. Sutcliffe, Methods of Molecular Quantum Mechanics, (Academic Press: New York 1978) p94.Google Scholar
  28. 21.
    I. Shavitt, Modern Theoretical Chemistry: Vol. 3, Methods of Electronic Structure Theory, Edited by H. F. Schaefer III, (Plenum, New York and London, 1977) p189.CrossRefGoogle Scholar
  29. 22.
    A. D. McLean, Proceedings of the Conference on Potential Energy Surfaces in Chemistry, ed. by W. A. Lester Jr., (IBM, San Jose, 1971) 87.Google Scholar
  30. 23.
    C. J. Noble, Daresbury Laboratory Report, DL/SCI/TM33T (1982).Google Scholar
  31. 24.
    P. J. A. Buttle, Phys. Rev., 162, 719 (1967).ADSCrossRefGoogle Scholar
  32. 25.
    L. A. Morgan, Comput. Phys. Commun., 31, 419 (1984).ADSCrossRefGoogle Scholar
  33. 26.
    M. J. Seaton, J. Phys. B., 18, 2111 (1985).ADSCrossRefGoogle Scholar
  34. 27.
    B. K. Sarpal, S. E. Branchett, J. Tennyson and L. Morgan, J. Phys. B., 24, 3685 (1991).ADSCrossRefGoogle Scholar
  35. 28.
    S. E. Branchett, PhD Thesis, University College London (1991).Google Scholar
  36. 29.
    S. E. Branchett and J. Tennyson, J. Phys. B., 25, 2017 (1992).ADSCrossRefGoogle Scholar
  37. 30.
    P. Ohja and P. G. Burke, J. Phys. B., 16, 3513 (1983).ADSCrossRefGoogle Scholar
  38. 31.
    C. J. Gillan, B. M. McLaughlin and P. G. Burke, Dissociative Recombination: Theory, Experiment and Applications, (Plenum: New York 1993) 155.Google Scholar
  39. 32.
    S. E. Branchett and J. Tennyson, J. Phys. B., 25, 2017 (1992).ADSCrossRefGoogle Scholar
  40. 33.
    B. K. Sarpal and J. Tennyson, J. Phys. B., 25, L49 (1992).ADSCrossRefGoogle Scholar
  41. 34.
    T. Gorczyca and D. W. Norcross, Phys. Rev. A, 45, 140 (1992)ADSCrossRefGoogle Scholar
  42. T. Gorczyca and D. W. Norcross, Phys. Rev. A, 42, 5132 (1990).ADSCrossRefGoogle Scholar
  43. 35.
    M. J. Seaton, Rep. Prog. Phys., 46, 167 (1983).ADSCrossRefGoogle Scholar
  44. 36.
    D. Yarkony, J. Chem. Phys. 90, 7164 (1989).ADSCrossRefGoogle Scholar
  45. 37.
    K. K. Sunil, J. Lin, H. Siddiqui, P. E. Siska, K. D. Jordan and R. Shephard, J. Chem. Phys., 78, 6190 (1983)ADSCrossRefGoogle Scholar
  46. K. D. Jordan and P. E. Siska, J. Chem. Phys., 80, 5027 (1984).ADSCrossRefGoogle Scholar
  47. 38.
    J. Tennyson and C. J. Noble, Comput. Phys. Commun., 33, 421 (1984).ADSCrossRefGoogle Scholar
  48. 39.
    S. L. Guberman, PhD Thesis, Caltech (1973), University Microfilms, Ann Arbor, MichiganGoogle Scholar
  49. S. L. Guberman and W. A. Goddard III, Phys. Rev. A, 12, 1203 (1975).ADSCrossRefGoogle Scholar
  50. 40.
    B. K. Sarpal, J. Tennyson and L. Morgan, J. Phys. B., 24, 1851 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Brendan M. McLaughlin
    • 1
  • Charles J. Gillan
    • 2
  1. 1.Institute for Theoretical Atomic and Molecular PhysicsHarvard-Smithsonian Center for AstrophysicsCambridgeUSA
  2. 2.Theoretical and Computational Physics Research Division, Department of Applied Mathematics and Theoretical PhysicsThe Queen’s University of BelfastBelfastUK

Personalised recommendations