The UK Molecular R-Matrix Scattering Package: a Computational Perspective

  • Charles J. Gillan
  • Jonathan Tennyson
  • Philip G. Burke


The R-matrix theory has been presented in the previous chapters of this book from a theoretical standpoint. Such is its complexity however that a separate chapter, that is this one, must be devoted to the implementation of the theory as a set of computer programs. Obviously if the R-matrix theory or any other method of solving the electron molecule scattering problem is to be viable it must be economic in the sense that it can be used routinely to produce numeric data for comparison with experimental measurements. Today, this means that the theory can be coded as a set of one or more computer codes which can be run in realistic time scales to produce data. This chapter attempts to show how the R-matrix method has been implemented, by a collaboration in the UK, in order to meet this objective. The reader should remember that the program suite reported here has been, and continues to be, developed and maintained by many people including overseas visitors and not iust these authors.


Nuclear Motion Virtual Orbital Hamiltonian Matrix Element Configuration State Function Numerical Basis Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.J. Gillan, O. Nagy, P.G. Burke, L.A. Morgan and C.J. Noble, J. Phys. B:At. Mol. Phys. 20, 4585 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    P.G. Burke, I. Mackey and I. Shimamura, J. Phys. B:At. Mol. Phys. 10, 2497 (1977)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    M. Yoshimine and A.D. McLean, IBM Journal of Research and Development 12, 206 (1968)CrossRefGoogle Scholar
  4. 4.
    P.J.A. Buttle, Phys. Rev. A160, 719 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    I. Shavitt, Methods of Computational Physics 1 (1963)Google Scholar
  6. 6.
    C.J. Noble, “The Alchemy linear molecule integral generator”, Daresbury Laboratory Report DL/SCI/TM33T, SERC Daresbury Laboratory, (1982)Google Scholar
  7. 7.
    H.S.W. Massey and C.B.O. Mohr, Proc. Roy. Soc.(London) A136, 289 (1932)ADSGoogle Scholar
  8. 8.
    J.C. Morrison, A.W. Weiss, K. Kirby and D. Cooper, “Structure of atoms and molecules”, in: “Encyclopedia of Applied Physics Volume 6”, VCH Publishers Inc, (1993)Google Scholar
  9. 9.
    R.K. Nesbet, J. Chem. Phys, 40, 3619 (1964)ADSCrossRefGoogle Scholar
  10. 10.
    C.J. Gillan, C.J. Noble and P.G. Burke, J. Phys. B:At. Mol. Phys. 21, L53 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    W.C. Ermler, A.D. McLean and R.S. Mulliken, IBM Research Report RJ3243 (1981)Google Scholar
  12. 12.
    I. Shimamura, “Rotational excitation of molecules by slow electrons”, in: “Electron Molecule Collisions”, I. Shimamura and K. Takayanagi, ed., Plenum Press, New York (1985)CrossRefGoogle Scholar
  13. 13.
    A.D. McLean, “Potential energy surfaces from ab-initio computation: current and projected capabilities of the Alchemy computer program”, in: “Proc. Conf. on Potential Energy Surfaces in Chemistry”, WA Lester Jr., ed., IBM San Jose (1971)Google Scholar
  14. 14.
    A.D. McLean, M. Yoshimine, B.H. Lengsfield III, P.S. Bagus and B. Liu, “ALCHEMY II: A research tool for molecular electronic structure interactions”, in: “MOTECC Modern Techniques in Computational Chemistry”, Clementi E ed., ESCOM Science BV, Leiden (1991)Google Scholar
  15. 15.
    J. Kendrick and B.D. Buckley, “An adaptation of the Alchemy atomic and molecular integrals packages for R-matrix electron-molecular collisions”, Daresbury Laboratory Report DL/SCI/TM22T, SERC Daresbury Laboratory, (1980)Google Scholar
  16. 16.
    C.C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951)ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    P.S. Bagus, IBM Research Report RJ1077 (1972)Google Scholar
  18. 18.
    S. Salvini, Ph.D Thesis Queen’s University of Belfast (1984)Google Scholar
  19. 19.
    J. Tennyson, P.G. Burke and K.A. Berrington, Comp. Phys. Commun. 47, 207 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    R.K. Nesbet, “Variational Methods in Electron Atom Scattering Theory,” Plenum, New York (1980)CrossRefGoogle Scholar
  21. 21.
    A.E. Orel, T.N. Rescigno and B.H. Lengsfield III, Phys. Rev., A44, 4328 (1991)ADSGoogle Scholar
  22. 22.
    U. Fano, Phys. Rev., A67, 140 (1965)Google Scholar
  23. 23.
    L.A. Morgan and J. Tennyson, J. Phys. B:At Mol. Opt. Phys., 26, 2429 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    B. Liu and M. Yoshimine, IBM Research Report RJ2849 (1980)Google Scholar
  25. 25.
    M. Yoshimine, J. Comp. Phys., 11, 449 (1973)ADSCrossRefGoogle Scholar
  26. 26.
    R. McWeeny and B.T. Sutcliffe, “Methods of Molecular Quantum Mechanics”, Academic Press, London (1969)Google Scholar
  27. 27.
    I. Shavitt, “The method of configuration interaction in electronic structure theory”, in: “Methods of Electronic Structure Theory”, H.F. Schaefer III, ed., Plenum Press, New York (1977)Google Scholar
  28. 28.
    K.L. Baluja, P.G. Burke and L.A. Morgan, Gomput. Phys. Commun. 27, 299 (1982)ADSCrossRefGoogle Scholar
  29. 29.
    M. Gailitis, J. Phys. B:At. Mol. Phys. 9, 843 (1976)ADSCrossRefGoogle Scholar
  30. 30.
    C.J. Noble and R.K. Nesbet, Gomput. Phys. Commun. 33, 399 (1984)ADSCrossRefGoogle Scholar
  31. 31.
    S.E. Branchett and J. Tennyson, J. Phys. B:At. Mol. Opt. Phys. 25, 2017 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    J. Tennyson and C.J. Noble, Comput. Phys. Commun. 33, 421 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    B.K. Sarpal and J. Tennyson, J. Phys. B:At. Mol. Opt. Phys 25, L49 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    M.K. Seaton, J. Phys. B:At. Mol. Phys. 18, 2111 (1985)ADSCrossRefGoogle Scholar
  35. 35.
    L. Malégat, Comput. Phys. Commun. 60, 391 (1990)ADSCrossRefGoogle Scholar
  36. 36.
    W. AbuSufah, D. Kuck and D. Lawrie, “Automatic program transformations for virtual memory computers”, in: “National Computer Conference”, AFIPS Conference Proceedings (1979)Google Scholar
  37. 37.
    B. Liu and N. Strother, “Peak performance from VS Fortran”, in: “Proceedings of SHARE 67,” (1986)Google Scholar
  38. 38.
    R. Fandreyer, P.G. Burke, L.A. Morgan and C.J. GiUan, J. Phys. B:At. Mol. Opt. Phys. 26, 3625 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    J. Almlöf, “The Program System MOLECULE: Integrals”, USIP Report 74–29, Stockholm, (1974)Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Charles J. Gillan
    • 1
  • Jonathan Tennyson
    • 2
  • Philip G. Burke
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsQueen’s University of BelfastN. IrelandUK
  2. 2.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations