A Critique of the Interpretation of Nuclear Overhauser Effects of Duplex DNA

  • Jane M. Withka
  • S. Swaminathan
  • Philip H. Bolton
Chapter
Part of the NATO ASI Series book series (NSSA, volume 225)

Abstract

The shape of a duplex DNA molecule can be modeled as a cylinder with symmetry axis z. The effective correlation time of an internuclear vector depends on the orientation of the vector to the symmetry axis as well as the internuclear distance and extent of internal motion. Calculations are presented which illustrate these principles. Since the effective correlation times can depend on the orientation of internuclear vectors so do NMR relaxation parameters such as the rate of buildup of nuclear Overhauser effects and the rates of spin diffusion. The approach is illustrated using a model nucleotide to show how the magnetization transfer can be affected by the orientation and spin diffusion rates.

Keywords

Magnetization Transfer Orientation Effect Internuclear Distance Internal Motion Spin Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. M. Clore and A. M. Gronenborn, CRC Crit. Rev. Biochem. and Mol. Biol. 24, 479 (1989).CrossRefGoogle Scholar
  2. 2.
    K. Wüthrich, “NMR of Proteins and Nucleic Acids”, Wüey, New York (1986).Google Scholar
  3. 3.
    S. B. Landy and B. D. Nageswara Rao, J. Magn. Reson. 83, 29 (1983).Google Scholar
  4. 4.
    D. E. Woessner, J. Chem. Phys. 37, 647 (1962).CrossRefGoogle Scholar
  5. 5.
    G. Lipardi and A. Szabo, J. Am. Chem. Soc. 104, 4546 (1982).CrossRefGoogle Scholar
  6. 6.
    H. W. Spiess, Basic Princ. NMR 15, 54 (1978).Google Scholar
  7. 7.
    B. R. Reid, K. Banks, P. Flynn and W. Nerdal, Biochemistry 15, 10001 (1989).CrossRefGoogle Scholar
  8. 8.
    M. M. Tirado, M. C. Lopez Martinez, and J. Garcia de la Torre, Biopolymers 23, 611 (1984).CrossRefGoogle Scholar
  9. 9.
    T. Yoshizaki and H. Ymamkawa, J. Chem.Phys. 72, 57 (1980).CrossRefGoogle Scholar
  10. 10.
    W. Eimer, J. R. Williamson, S. G. Boxer, and R. Pecora, Biochemistry 29, 799 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    Mathematica is a trademark of Wolfram Research Inc., Champaign, Illinois.Google Scholar
  12. 12.
    B. A. Borgias, M. Gochin, D. J. Kerwood and T. L. James, Progress in NMR Spectroscopy 22, 83 (1989).CrossRefGoogle Scholar
  13. 13.
    F. J. M. Van De Ven and C. W. Hübers, Eur. J. Biochem. 178, 1 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Arnott and D. W. L. Hukins, Biochem. Biophys. Res. Commun. 47, 1504 (1972).PubMedCrossRefGoogle Scholar
  15. 15.
    G. M. Clore and A. M. Gronenborn, J. Magn. Reson. 84, 398 (1989).Google Scholar
  16. 16.
    J. M. Withka, S. Swaminathan, and P. H. Bolton, J. Magn. Reson. 00, 000 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Jane M. Withka
    • 1
  • S. Swaminathan
    • 1
  • Philip H. Bolton
    • 1
  1. 1.Chemistry DepartmentWesleyan UniversityMiddletownUSA

Personalised recommendations