Incorporation of Internal Motion in NMR Refinements Based on NOESY Data

  • Ping F. Yip
  • David A. Case
Chapter
Part of the NATO ASI Series book series (NSSA, volume 225)

Abstract

One promising way of carrying out the final refinements for solution structures of proteins and nucleic acids involves an automated fitting of the observed NOESY peak intensities to those calculated from a multi-spin relaxation model. We have previously discussed how simulated annealing procedures could be used to carry out such calculations (Yip and Case, J. Magn. Reson. 83, 643–648 (1989)). We now extend this initial model to allow discrete jump models of internal motions (assumed to be uncoupled from overall rotational diffusion), and compare these results to those from static models or effective order parameters. Preliminary results for plastocyanin suggest that this level of theory will be sufficiently accurate in many cases to be used as a basis for structural refinement.

Keywords

Spectral Density Internal Motion Rotational Diffusion Nuclear Overhauser Effect Jump Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Wüthrich, Science 243, 45–50 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    R. Kaptein, R. Boelens, R.M. Scheek, and W.F. van Gunsteren, Biochemistry 27, 5389–5395 (1988).PubMedCrossRefGoogle Scholar
  3. 3.
    G.M. Clore, and A.M. Gronenbom, Crit. Rev. Biochem. Mol. Biol. 24, 479–564 (1989).PubMedCrossRefGoogle Scholar
  4. 4.
    G.P. Gippert, P.F. Yip, P.E. Wright, and D.A. Case, Biochem. Pharm. 40, 15–22 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    A.T. Brünger, J. Kuriyan, and M. Karplus, Science 235, 458–460 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Yip, and D.A. Case, J. Magn. Reson. 83, 643–648 (1989).Google Scholar
  7. 7.
    R. Boelens, T.M.G. Koning, and R. Kaptein, J. Molec. Struct. 173, 299–311 (1988).CrossRefGoogle Scholar
  8. 8.
    B.A. Borgias, M. Gochin, D.J. Kerwood, and T.L. James, Prog. NMR Sped. 22, 83–100 (1990).CrossRefGoogle Scholar
  9. 9.
    J.D. Baleja, R.T. Pon, and B.D. Sykes, Biochemistry 29, 4828–4839 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    W. Nerdal, D.R. Hare, and B.R. Reid, Biochemistry 28, 10008–10021 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    E.P. Nakonowicz, R.P. Meadows, and D.G. Gorenstein, Biochemistry 29, 4193–4204 (1990).CrossRefGoogle Scholar
  12. 12.
    R.J. Wittebort and A. Szabo, J. Chem. Phys. 69, 1722–1736 (1978).CrossRefGoogle Scholar
  13. 13.
    J. Tropp, J. Chem. Phys. 72, 6035–6043 (1980).CrossRefGoogle Scholar
  14. 14.
    J.W. Keepers and T.L. James, J. Am. Chem. Soc. 104, 929–939 (1982).CrossRefGoogle Scholar
  15. 15.
    R.E. London, Meth. Enzym. 176, 358–375 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Wallach, J. Chem. Phys. 47, 5258–5268 (1967).CrossRefGoogle Scholar
  17. 17.
    D.E. Woessner, J. Chem. Phys. 42, 1855–1859 (1965).CrossRefGoogle Scholar
  18. 18.
    E.T. Olejniczak, J. Magn. Reson. 81, 392–394 (1989).Google Scholar
  19. 19.
    E.R. Andrew, W.S. Hinshaw, and M.G. Hutchins, J. Magn. Reson. 15, 196 (1974).Google Scholar
  20. 20.
    D.A. Torchia, 1984, Annu. Rev. Biophys. Bioeng. 13, 125–144 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    D.M. LeMaster, L.E. Kay, A.T. Brunger, and J.H. Prestegard, J. H., FEBS Lett. 236, 71–76 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    E.T. Olejniczak, CM. Dobson, M. Karplus, and R.M. Levy, J. Am. Chem. Soc. 106, 1923–1930 (1984).CrossRefGoogle Scholar
  23. 23.
    G. Lipari, and A. Szabo, J. Am. Chem. Soc. 104, 4546–4559 (1982).CrossRefGoogle Scholar
  24. 24.
    J.W. Keepers, and T.L. James, J. Magn. Reson. 57, 404–426 (1984).Google Scholar
  25. 25.
    M. Madrid, and O. Jardetzky, Biochim. Biophys. Acta 953, 61–69 (1988).PubMedCrossRefGoogle Scholar
  26. 26.
    G.M. Clore and A.M. Gronenborn, FEBS Lett. 172, 219–225 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Kessler, C. Griesinger, J. Lautz, A. Müller, W.F. van Gunsteren, and H.J.C. Berendsen, J. Am. Chem. Soc. 110, 3393–3396 (1988).CrossRefGoogle Scholar
  28. 28.
    S.B. Landy and B.D.N. Rao, J. Magn. Reson. 81, 371–377 (1989).Google Scholar
  29. 29.
    A.J. Duben, and W.C. Hutton, J. Am. Chem. Soc. 112, 5917–5924 (1990).CrossRefGoogle Scholar
  30. 30.
    S.W. Fesik, T.J. O’Donnell, R.T. Gampe, and E.T. Olejniczak, J. Am. Chem. Soc. 108, 3165–3170 (1986).CrossRefGoogle Scholar
  31. 31.
    D. Genest, Biopolymers 28, 1903–1911 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Ping F. Yip
    • 1
  • David A. Case
    • 1
  1. 1.Department of Molecular Biology ResearchInstitute of Scripps ClinicLa JollaUSA

Personalised recommendations