Parametric Estimation in 1-D, 2-D, and 3-D NMR

  • David Cowburn
  • John Glushka
  • Frank DiGennaro
  • Carlos B. Rios
Part of the NATO ASI Series book series (NSSA, volume 225)


The increased power of nmr as an analytical and structure determining method arises from the development of two-dimensional methods in which spectral maps reflect through-bond and through-space connectivities between atoms. The interpretation of these maps is made complex by many factors, including the large number of such connectivities in many applications, the multiplicity of the spectral elements, and the limited signal-to-noise ratio. As one element of solving these problems, we have developed methods to simplify the cataloging of positions and intensities of peaks, and for examining and selecting among them. Linear Predictive Singular Value Decomposition is one numerical method used for the extraction of peak characteristics. Simple tools have been developed to select among spectral characteristics, to reduce multiplets to single peaks, and to incorporate pre-existing chemical information into the analysis. Characteristics of this approach of parametric estimation permit somewhat different approaches to experimental design. This may be particularly valuable in the determination of multiple vicinal coupling constants about single bonds.


Spectral Element Adenylate Kinase Bovine Pancreatic Trypsin Inhibitor Phase Sensitive Detection Stereospecific Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. P. Aue, E. Bartholdi, and R. R. Ernst, J. Chem. Phys. 64, 2229–46 (1976).CrossRefGoogle Scholar
  2. 2.
    R. R. Ernst, G. Bodenhausen, and A. Wokaun, in “Principles of Nuclear Magnetic Resonance in One and Two Dimensions”, Oxford University Press, Oxford (1987).Google Scholar
  3. 3.
    K. Wüthrich, “NMR of Proteins and Nucleic Acids”, Wiley-Interscience, New York (1986).Google Scholar
  4. 4.
    A. Bax, Ann. Rev. Biochem., 58, 223–256 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    R. R. Ernst, Chimia 41, 323–340 (1987).Google Scholar
  6. 6.
    L. P. Mclntosh, F. W. Dahlquist, and A. G. Redfield, J. Biomolec. Struct Dyn. 5, 21–34 (1987).CrossRefGoogle Scholar
  7. 7.
    H. Oschkinat, C. Griesinger, P. J. Kraulis, O. W. Sørensen, R. R. Ernst, A. M. Gronenborn, and G. M. Clore, Nature 332, 374–376 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    P. A. Bottomley, H. C. Charles, P. B. Roemer, D. Flamig, H. Engeseth, W. A. Edelstein, and O. M. Mueller, Mag. Res. Med. 7, 319–336 (1988).CrossRefGoogle Scholar
  9. 9.
    P. Pfändler, G. Bodenhausen, B. U. Meier, and R. R. Ernst, Anal. Chem., 57, 2510, (1985).CrossRefGoogle Scholar
  10. 10.
    O. Lichtarge, C. W. Cornelius, B. G. Buchanan, and O. Jardetzky, Proteins 2, 340–358 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    T. J. Harner, G. C. Levy, E. J. Dudewicz, F. Delaglio, and A. Kumar, Artificial Intelligence, Logic Programming, and Statistics in Magnetic Resonance Imaging and Spectrsocopic Analysis, in “Artificial Intelligence Applications in Chemistry,” T. H. Pierce and B. A. Holme, ed., pp. 337–349, American Chemical Society, Washington, D. C. (1986).CrossRefGoogle Scholar
  12. 12.
    R. R. Ernst, Adv. Magn. Res., 2, (1968).Google Scholar
  13. 13.
    R. R. Ernst and W. A. Anderson, The Review of Scientific Instruments 37, 93–102, (1966).CrossRefGoogle Scholar
  14. 14.
    W. Dietrich, B. Fröhlich, U. Günther, and M. Wiecken, Fresnius Z. Anal. Chem., 316, 227–230 (1983).CrossRefGoogle Scholar
  15. 15.
    R. E. Hoffman and G. C. Levy, J. Mag. Res. 83, 411–417 (1989).Google Scholar
  16. 16.
    P. J. M. van Laarhoven and E. H. L. Aarts, “Simulated Annealing: The Theory and Applications,” D. Reidel, Dordrecht (1987).CrossRefGoogle Scholar
  17. 17.
    F. DiGennaro and D. Cowburn, J. Magn. Res., in press (1991).Google Scholar
  18. 18.
    R. Kumaresan and D. W. Tufts, IEEE Trans. Acoust., Speech, Signal Processing, ASSP-30, 833–840 (1982).CrossRefGoogle Scholar
  19. 19.
    H. Barkuijsen, R. de Beer, W. M. M. J. Bovee, and D. van Ormondt, J. Magn. Res. 61, 465–481 (1985).Google Scholar
  20. 20.
    J. Tang, C. W. Lin, M. K. Bowman, and J. R. Norris, J. Magn. Res. 62, 167–171 (1985).Google Scholar
  21. 21.
    J. Tang and J. R. Norris, J. Magn. Res. 78(1), 23–30 (1988).Google Scholar
  22. 22.
    A. E. Schussheim and D. Cowburn, J. Magn. Res. 71, 371–378 (1987).Google Scholar
  23. 23.
    H. Gesmar and J. J. Led, J. Mag. Res. 83, 53–64 (1989).Google Scholar
  24. 24.
    J. Gorcester and J. H. Freed, J. Magn. Res., 78(2), 292–301 (1988).Google Scholar
  25. 25.
    J. Glushka and D. Cowburn, J. Am. Chem. Soc. 109, 7879–7888 (1987).CrossRefGoogle Scholar
  26. 26.
    D. Cowburn and J. Chaudhary, Quantum Chemistry Program Exchange Notes, 9, 97 (1989).Google Scholar
  27. 27.
    G. M. Clore, A. Bax, P. Wingfield, and A. M. Gronenborn, FEBS Letters 238, 17–21, (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    V. F. Bystrov, “Progress in NMR Spectroscopy” 10, 41-81, Pergamon Press (1976).Google Scholar
  29. 29.
    A. J. Fischman, D. H. Live, H. R. Wyssbrod, W. C. Agosta, and D. Cowburn, J. Am. Chem. Soc. 102, 2533–2599 (1980).CrossRefGoogle Scholar
  30. 30.
    D. Cowburn, D. H. Live, A. J. Fischman, and W. C. Agosta, J. Am. Chem. Soc, 105, 7435–7442, (1983).CrossRefGoogle Scholar
  31. 31.
    G. T. Montelione and G. Wagner, J.A.C.S. 111, 5474–5475, (1989).CrossRefGoogle Scholar
  32. 32.
    D. Neri, G. Otting, and K. Wiithrich, J. Am. Chem. Soc. 112, 3663–3665 (1990).CrossRefGoogle Scholar
  33. 33.
    G. W. Vuister and R. Boelens, J. Mag. Res., 73, 382 (1987).Google Scholar
  34. 34.
    D. H. Live, D. G. Davis, W. C. Agosta, and D. Cowburn, J. Am. Chem. Soc. 106, 6104–6105, (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David Cowburn
    • 1
  • John Glushka
    • 1
  • Frank DiGennaro
    • 1
  • Carlos B. Rios
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations