An Amateur Looks at Error Analysis in the Determination of Protein Structure by NMR

  • Jeffrey C. Hoch
Chapter
Part of the NATO ASI Series book series (NSSA, volume 225)

Abstract

Error analysis constitutes an important part of experimental physical chemistry, yet many of the concepts taught at the undergraduate level have yet to be systematically applied to the determination of protein structure by NMR. At first glance, the application of such simple concepts to the complex problem of structure determination might appear quixotic. However, with straightforward extensions, these concepts can yield valuable insights into the precision of NMR based structures. Some of these concepts are explored, using illustrative examples from the data of Driscoll et al. (Biochemistry 20, 2188 (1989)) for the 43 residue protein BDS-I.

Keywords

Trivial Solution Distance Restraint Hybrid Distance Plausible Structure Experimental Restraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Driscoll, A. M. Gronenborn, L. Beress, and G. M. Clore, Biochemistry 28, 2188 (1989).CrossRefPubMedGoogle Scholar
  2. 2.
    D. P. Shoemaker, C. W. Garland, and J. I. Steinfeld, “Experiments in Physical Chemistry,” McGraw-Hill, New York, 1974.Google Scholar
  3. 3.
    I. D. Kuntz, J. F. Thomason, and C. M. Oshiro, Methods Enzym. 177, 159 (1989).CrossRefGoogle Scholar
  4. 4.
    R. M. Scheek, W. F. van Gunsteren, and R. Kaptein, Methods Enzym. 177, 204 (1989).CrossRefGoogle Scholar
  5. 5.
    R. B. Altman and O. Jardetzky, Methods Enzym. 177, 218 (1989).CrossRefGoogle Scholar
  6. 6.
    B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comp. Chem. 4, 187 (1983).CrossRefGoogle Scholar
  7. 7.
    S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case, J. Comp. 1, 230 (1986).Google Scholar
  8. 8.
    GROMOS (by W. F. Van Gunsteren and H. J. C. Berendsen) is available from BIOMOS b.v., Nijenborgh 16, 9747 AG Gronengen, The Netherlands.Google Scholar
  9. 9.
    M. J. Sippl, G. Némethy, and H. A. Scheraga, J. Phys. Chem. 88, 6231 (1984).CrossRefGoogle Scholar
  10. 10.
    P. Yip and D. A. Case, J. Magn. Reson. 83, 643 (1989).Google Scholar
  11. 11.
    J. C. Hoch, C. M. Dobson, and M. Karplus, Biochemistry 21, 1118 (1982).CrossRefPubMedGoogle Scholar
  12. 12.
    T. A. Holak, J. H. Prestegard, and J. D. Forman, Biochemistry 26, 4652 (1987).CrossRefPubMedGoogle Scholar
  13. 13.
    T. F. Havel, Biopolymers 29, 1565 (1990).CrossRefPubMedGoogle Scholar
  14. 14.
    W. J. Metzler, D. R. Hare, and A. Pardi, Biochemistry 28, 7045 (1989).CrossRefPubMedGoogle Scholar
  15. 15.
    Biograf Users Manual, Biodesign, Inc., Pasadena, CA (1990).Google Scholar
  16. 16.
    C. Gonzalez, J. A. C. Rullmann, M. J. J. Bonvin, R. Boelens, and R. Kaptein, J. Magn. Reson. 91, 659 (1991).Google Scholar
  17. 17.
    P. D. Thomas, V. J. Basus, and T. L. James, Proc. Natl. Acad. Sci. USA 88, 1237 (1991).CrossRefPubMedGoogle Scholar
  18. 18.
    R. Boelens, T. M. G. Konig, and R. Kaptein, J. Mol. Struct. 173, 299 (1988).CrossRefGoogle Scholar
  19. 19.
    T. A. Holak, J. N. Scarsdale, and J. H. Prestegard, J. Magn. Reson. 74, 546 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Jeffrey C. Hoch
    • 1
  1. 1.Rowland Institute for ScienceCambridgeUSA

Personalised recommendations