Time Averaged Distance Restraints in NMR Based Structural Refinement

  • Andrew E. Torda
  • Ruud M. Scheek
  • Wilfred F. van Gunsteren
Chapter
Part of the NATO ASI Series book series (NSSA, volume 225)

Abstract

We discuss a method for the refinement of NMR based solution structures which attempts to account for the effect of mobility on measured NMR data. Rather than regard the NOE as a measure of a static distance, we attempt to account for the fact that the measured quantity actually reflects a time averaged property of the molecule.

A penalty function, suitable for incorporation into molecular dynamics simulations, is described which perturbs a system only to the extent necessary to ensure that a trajectory average is consistent with measured interproton distances.

Finally, we present some results which suggest wide applicability for the method, while also noting the limitations and scope for improvement.

Keywords

Conformational Space Distance Restraint Distance Geometry Trajectory Average GROMOS Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Borgias and T. L. James, J. Mágn. Reson. 79, 493–512 (1988).CrossRefGoogle Scholar
  2. 2.
    R. Boelens, T. M. G. Koning, and R. Kaptein, J. Mol. Struct. 173, 299–311 (1988).CrossRefGoogle Scholar
  3. 3.
    P. Yip, and D. A. Case, J. Mag. Reson. 83, 643–648 (1989).Google Scholar
  4. 4.
    O. Jardetzky, Biochim. Biophys. Acta. 621, 227–232 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    A. D. Kline, W. Braun, and K. Wüithrich, J. Mol. Biol. 204, 675–724 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    W. F. van Gunsteren, R. Kaptein, and E. R. P. Zuiderweg, in “Proceedings of a NATO/CECAM Workshop on Nucleic Acid Conformation and Dynamics,” W. K. Olsen, ed., CECAM, Orsay, pp. 79–82, CECAM, Orsay (1984).Google Scholar
  7. 7.
    R. Kaptein, E. R. P. Zuiderweg, R. M. Scheek, R. Boelens, and W. F. van Gunsteren, J. Mol. Biol 182, 179–182 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Tropp, J. Chem. Phys. 72, 6035–6043 (1980).CrossRefGoogle Scholar
  9. 9.
    A. E. Torda, R. M. Scheek, and W. F. van Gunsteren, Chem. Phys. Lett. 157, 289–294 (1989).CrossRefGoogle Scholar
  10. 10.
    A. E. Torda, R. M. Scheek, and W. F. van Gunsteren, J. Mol Biol. 214, 223–235 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    W. Braun, and N. Gō J. Mol. Biol. 186, 611–626 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Wüthrich, Science 243, 45–50 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    W. F. van Gunsteren, and H. J. C. Berendsen, “Groningen Molecular Simulation (GROMOS) Library Manual”, Biomos, Groningen, (1987).Google Scholar
  14. 14.
    M. Billeter, A. D. Kline, W. Braun, R. Huber, and K. Wüthrich, J. Mol Biol 206, 677–687 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Andrew E. Torda
    • 1
  • Ruud M. Scheek
    • 1
    • 2
  • Wilfred F. van Gunsteren
    • 1
  1. 1.Physical Chemistry DepartmentETH ZentrumZürichSwitzerland
  2. 2.Laboratory of Physical ChemistryUniversity of GroningenAG GroningenThe Netherlands

Personalised recommendations