Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy pp 175-190 | Cite as
Pattern Recognition in Two-Dimensional NMR Spectra of Proteins
Abstract
Today, two-dimensional NMR spectroscopy has become a well-accepted method for the determination of the three-dimensional structures of biological macromolecules such as proteins in solution. The primary evaluation of the spectroscopic data is very time-consuming and complicated, therefore computer assistance grows more and more important. It is not surprising that a number of groups work in the field of pattern recognition in n-dimensional NMR spectra of macromolecules (n ≥ 2). Correspondingly, a number of different methods were described that can solve at least some special aspects of this problem1–29.
Keywords
Cross Peak Contour Level Match Factor Digital Resolution Symmetry EnhancementPreview
Unable to display preview. Download preview PDF.
References
- 1.K.-P. Neidig, H. Bodenmüller, and H. R. Kalbitzer, Biochem. Biophys. Res. Comm. 125, 1143–1150 (1984).PubMedCrossRefGoogle Scholar
- 2.K.-P. Neidig, R. Saffrich, M. Lorenz, and H. R. Kalbitzer,J. Magn. Reson., 89, 543–552 (1990).Google Scholar
- 3.B. U. Meier, G. Bodenhausen, and R. R. Ernst, J. Magn. Reson. 60, 161–163 (1984).Google Scholar
- 4.B. U. Meier, Z. L. Mádi, and R. R. Ernst, J. Magn. Reson. 74, 565–573 (1987).Google Scholar
- 5.P. Pfändler, G. Bodenhausen, B. U. Meier, and R. R. Ernst, Anal. Chem. 57, 2510–2516 (1985).CrossRefGoogle Scholar
- 6.P. Pfändler and G. Bodenhausen, J. Magn. Reson. 70, 71–78 (1986).Google Scholar
- 7.P. Pfändler and G. Bodenhausen, Magn. Reson. Chem. 26, 888–894 (1988).CrossRefGoogle Scholar
- 8.P. Pfändler and G. Bodenhausen, J. Magn. Reson. 79, 99–123 (1988).Google Scholar
- 9.S. Glaser and H. R. Kalbitzer, J. Magn. Reson. 74, 450–463 (1987).Google Scholar
- 10.J. C. Hoch, S. Hengyi, M. Kjær, S. Ludvigsen, and F. M. Poulsen, Carlberg Res. Comm. 52, 111–122 (1987).CrossRefGoogle Scholar
- 11.Z. L. Mádi, B. U. Meier, and R. R. Ernst, J. Magn. Reson. 72, 584–590 (1987).Google Scholar
- 12.M. Novic, H. Oschkinat, P. Pfändler, and G. Bodenhausen, J. Magn. Reson. 73, 493–511 (1987).Google Scholar
- 13.M. Novic, U. Eggenberger, and G. Bodenhausen, J. Magn. Reson. 77, 394–400 (1988).Google Scholar
- 14.H. Egli, Magn. Reson. Chem. 26, 876–860 (1988).CrossRefGoogle Scholar
- 15.M. Novic, and G. Bodenhausen, Anal. Chem. 60, 582–591 (1988).CrossRefGoogle Scholar
- 16.B. U. Meier and R. R. Ernst, J. Magn. Reson. 79, 540–546 (1988).Google Scholar
- 17.Z. L. Mádi, and R. R. Ernst, J. Magn. Reson. 79, 513–527 (1988).Google Scholar
- 18.U. Eggenberger, P. Pfändler, and G. Bodenhausen, J. Magn. Reson. 77, 192–196 (1988).Google Scholar
- 19.H. Grahn, F. Delaglio, M. A. Delsuc, and G. C. Levy, J. Magn. Reson. 77, 294–307 (1988).Google Scholar
- 20.M. Billeter, V. J. Basus, and I. D. Kuntz, J. Magn. Reson. 76, 400–415 (1988).Google Scholar
- 21.C. Ciesler, G. M. Clore, and A. M. Gronenborn, J. Magn. Reson. 80, 119–127 (1988).Google Scholar
- 22.C. Ciesler, T. A. Holak, and H. Oschkinat, J. Magn. Reson. 87, 400–407 (1990).Google Scholar
- 23.C. D. Eads and I. D. Kuntz, J. Magn. Reson. 82, 467–482 (1989).Google Scholar
- 24.W. J. Goux, J. Magn. Reson. 85, 457–469 (1989).Google Scholar
- 25.G. J. Kleywegt, R. M. J. N. Lamerichs, R. Boelens, and R. Kaptein, J. Magn. Reson. 85, 186–197 (1989).Google Scholar
- 26.G. J. Kleywegt, R. Boelens, and R. Kaptein, J. Magn. Reson. 88, 601–608 (1990).Google Scholar
- 27.P. J. Kraulis, J. Magn. Reson. 84, 627–633 (1989).Google Scholar
- 28.V. Stoven, A. Mikou, D. Piveteau, E. Guittet, and J.-Y. Lallemand, J. Magn. Reson. 82, 163–168 (1989).Google Scholar
- 29.H. R. Kalbitzer, K.-P. Neidig, and W. Hengstenberg, Physica B 164, 180–192 (1990).CrossRefGoogle Scholar
- 30.D. Marion, M. Ikura, and A. Bax, J. Magn. Reson. 84, 425–430 (1989).Google Scholar
- 31.Y. Kuroda, A. Wada, T. Yamazaki, and K. Nagayama, J. Magn. Reson. 84, 604–610 (1989).Google Scholar
- 32.G. Otting, H. Widmer, G. Wagner, and K. Wüthrich, J. Magn. Reson. 66, 187–193 (1986).Google Scholar
- 33.R. E. Klevit, J. Magn. Reson. 62, 551–555 (1985).Google Scholar
- 34.P. H. Bolton, J. Magn. Reson. 64, 352–355 (1985).Google Scholar
- 35.S. Glaser and H. R. Kalbitzer, J. Magn. Reson. 68, 350–345 (1986).Google Scholar
- 36.Z. Zolnai, S. Macura, and J. L. Markley, Comput. Enhanced Spect. 3, 141–145 (1986).Google Scholar
- 37.Z. Zolnai, S. Macura, and J. L. Markley, J. Magn. Reson. 80, 60–70 (1988).Google Scholar
- 38.Z. Zolnai, S. Macura, and J. L. Markley, J. Magn. Reson. 82, 496–504 (1989).Google Scholar
- 39.I. L. Barsukov and A. S. Arseniev, J. Magn. Reson. 73, 148–149 (1987).Google Scholar
- 40.L. Mitschang, K.-P. Neidig, and H. R. Kalbitzer, J. Magn. Reson., 90, 359–362 (1990).Google Scholar
- 41.P. H. Bolton, J. Magn. Reson. 68, 180–184 (1986).Google Scholar
- 42.P. H. Bolton, J. Magn. Reson. 70, 344–349 (1986).Google Scholar
- 43.R. Baumann, A. Kumar, R. R. Ernst, and K. Wüthrich, J. Magn. Reson. 44, 76–83 (1981).Google Scholar
- 44.R. Baumann, G. Wider, R. R. Ernst, and K. Wüthrich, J. Magn. Reson. 44, 402–406 (1981).Google Scholar
- 45.P. H. Bolton, J. Magn. Reson. 67, 391–395 (1986).Google Scholar
- 46.K.-P. Neidig and H. R. Kalbitzer, Magn. Reson. Chem. 26, 848–851 (1988).CrossRefGoogle Scholar
- 47.K.-P. Neidig and H. R. Kalbitzer, J. Magn. Reson. 88, 155–160 (1990).Google Scholar
- 48.K.-P. Neidig and H. R. Kalbitzer, J. Magn. Reson., 91, 155–164 (1991).Google Scholar
- 49.A. G. Ferrige, and J. C. Lindon, J. Magn. Reson. 31, 337–340 (1978).Google Scholar
- 50.J. D. Foley, and A. van Dam, “Fundamentals of Interactive Computergraphics,” Addison-Wesley Publishing Company, London (1984).Google Scholar
- 51.J. A. Richards, “Remote Sensing Digital Image Analysis,” Springer, Heidelberg (1987).Google Scholar