Theoretical Studies of Semiconductor Surfaces with Particular Reference to Fluorine and Chlorine Chemisorption on Si(001)

  • P. V. Smith
  • M. W. Radny
  • A. J. Dyson

Abstract

The study of semiconductor surfaces is of both considerable fundamental and technological importance. Unlike metal surfaces which maintain their bulk geometry and simply undergo changes in the surface interlayer spacings, semiconductor surfaces usually reconstruct to form completely new geometrical structures.1 Perhaps the best example of this is the Si(111) surface. When cleaved along a (111) plane at room temperature silicon exhibits a (2×1) reconstruction.2 Annealing this surface at high temperature for a short time produces a √3×√3R30° LEED pattern believed to be associated with a vacancy model.3 Further annealing yields diffraction spots characteristic of the now famous Si(111)7×7 adatom-dimer-stacking-fault structure of Takayanagi et al.4 It is this diversity of surface reconstructions and their associated properties which makes semiconductor surfaces such an interesting and fascinating area of study.

Keywords

Scanning Tunnelling Microscopy Semiconductor Surface Monolayer Coverage Dangling Bond Bridge Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. B. Duke, J. Vac. Sci. Technol. B14:1336 (1993).Google Scholar
  2. 2.
    K. C. Pandey, Phys. Rev. Lett. 47:1913 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    W. C. Fan, A. Ignatiev, H. Huang and S. Y. Tong, Phys. Rev. Lett. 62:1516 (1989).ADSCrossRefGoogle Scholar
  4. 4.
    V. Takayanagi, Y. Tanishino, M. Takahashi and S. Takahashi, J. Vac. Sci. Technol. A3:1502 (1985).ADSGoogle Scholar
  5. 5.
    A. Zangwill, “Physics at Surfaces,” Cambridge University Press, (1988).Google Scholar
  6. 6.
    J. A. Pople and D. L. Beveridge, “Approximate Molecular Orbital Theory,” McGraw-Hill, New York, (1970).Google Scholar
  7. 7.
    R. C. Bingham, M. J. S. Dewar and D. H. Lo, J. Amer. Chem. Soc. 97:1285 (1975).CrossRefGoogle Scholar
  8. 8.
    M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Amer. Chem. Soc. 107:3902. (1985).CrossRefGoogle Scholar
  9. 9.
    J. J. P. Stewart, J. Comp. Chem. 10:209 (1989).CrossRefGoogle Scholar
  10. 10.
    M. P. Allen and D. J. Tildesley, “Computer Simulations in Liquids,” Oxford University Press, Oxford, (1992).Google Scholar
  11. 11.
    C. Pisani, R. Dovesi and C. Roetti, “Lecture Notes in Chemistry,” Vol. 48, Springer-Verlag, Heidelberg, (1988).Google Scholar
  12. 12.
    R. M. Dreizler and E. K. U. Gross, “Density Functional Theory,” Springer-Verlag, Berlin, (1990).MATHCrossRefGoogle Scholar
  13. 13.
    J. Ihm, M. L. Cohen, and D. J. Chadi, Phys. Rev. B21:4592 (1980).ADSCrossRefGoogle Scholar
  14. M. T. Yin and M. L. Cohen, Phys. Rev. B24:2303 (1981).ADSCrossRefGoogle Scholar
  15. 14.
    J. Pollman and S. K. Pantelides, Phys. Rev. B18:5524 (1978).ADSCrossRefGoogle Scholar
  16. S. Crampin, D. D. Vvedensky, J. M. MacLaren, and M. E. Eberhardt, Phys. Rev. B40:3413 (1989).ADSCrossRefGoogle Scholar
  17. 15.
    G. Galli and M. Parinello, in: “Computer Simulation in Material Science,” NATO ASI Series E: Applied Sciences, Vol. 205, M. Meyer and V. Pontikis, eds., Kluwer Academic, Dordrecht, (1991).Google Scholar
  18. 16.
    D. M. Ceperly and M. H. Kalos, “Quantum Monte Carlo Methods,” M. Suzuki, ed., Springer-Verlag, New York, (1987).Google Scholar
  19. 17.
    Y. Enta, S. Suzuki and S. Kono, Phys. Rev. Lett. 65:2704 (1990).ADSCrossRefGoogle Scholar
  20. 18.
    See the review articles by: D. Haneman, Rep. Prog. Phys. 50:1045 (1987).ADSCrossRefGoogle Scholar
  21. J. E. Griffith and G. P. Kochanski, Crit. Rev. Solid State Mater. Sci. 16:255 (1990).ADSCrossRefGoogle Scholar
  22. 19.
    F. J. Himpsel and D. E. Eastman, J. Vac. Sci. Technol. 16:1297 (1979).ADSCrossRefGoogle Scholar
  23. H. A. Van Hoof, G. V. Hansson, J. M. Nicholls and S. A. Flodstrom, Phys. Rev. B24:4684 (1981).ADSCrossRefGoogle Scholar
  24. 20.
    R. M. Tromp, R. G. Smeek and F. W. Saris, Phys. Rev. Lett46:9392 (1981).CrossRefGoogle Scholar
  25. R. M. Tromp, R. G. Smeek, F. W. Saris and D. J. Chadi, Surf. Sci. 133:137 (1983).ADSCrossRefGoogle Scholar
  26. 21.
    E. Landemark, C. J. Karlsson, Y. C. Chao and R. I. G. Uhrgerg, Surf. Sci. 287/288:529 (1993).ADSCrossRefGoogle Scholar
  27. 22.
    Y. S. Shu, W. S. Yang, F. Jona and P. M. Marcus, in: “The Structure of Surfaces,” M. A. Van Hove and S. Y. Tong, eds., Springer-Verlag, Berlin, (1985).Google Scholar
  28. B. W. Holland, C. B. Duke and A. Paton, Surf Sci. 140:L269 (1984).CrossRefGoogle Scholar
  29. 23.
    S. Y. Tong and A. L. Maldonado, Surf Sci. 34:90 (1973).CrossRefGoogle Scholar
  30. 24.
    L. S. O. Johansson, R. I. G. Uhrberg, P. Martensson and G. V. Hansson, Phys. Rev. B42:1303 (1990).ADSGoogle Scholar
  31. 25.
    R. J. Hamers, R. M. Tromp and J. E. Demuth, Phys. Rev. B34:5343 (1986).ADSCrossRefGoogle Scholar
  32. P. Avouris, J. Phys. Chem. 94:2246 (1990).CrossRefGoogle Scholar
  33. 26.
    K. C. Pandey, in: “Proceedings of the 17th International Conference on the Physics of Semiconductors,” D. J. Chadi and W. A. Harrison, eds., Springer-Verlag, Berlin, (1984).Google Scholar
  34. 27.
    D. J. Chadi, Phys. Rev. Lett. 43:43 (1979).ADSCrossRefGoogle Scholar
  35. 28.
    B. I. Craig and P. V. Smith, Surf Sci. 218:569 (1989).ADSCrossRefGoogle Scholar
  36. 29.
    Z. Zhu, N. Shima and M. Tsukada, Phys. Rev. B40:11868 (1989).ADSCrossRefGoogle Scholar
  37. J. Dabrowski and M. Scheffler, Appl. Surf. Sci. 56:15 (1992).ADSCrossRefGoogle Scholar
  38. K. Kobayashi, Y. Morikawa, K. Therakura and S. Blägel, Phys. Rev. B45:3469 (1992).ADSCrossRefGoogle Scholar
  39. M. C. Payne, N. Roberts, R. J. Needs, M. Needels and J. D. Joannopoulos, Surf Sci. 211/212:1 (1989).ADSCrossRefGoogle Scholar
  40. I. P. Batra, Phys. Rev. B41:5048 (1990).ADSCrossRefGoogle Scholar
  41. S. Tang, A. J. Freeman and B. Delley, Phys. Rev. B45:1776 (1992).ADSCrossRefGoogle Scholar
  42. 30.
    E. Artacho and F. Yndurain, Phys. Rev. Lett. 62:2491 (1984).ADSCrossRefGoogle Scholar
  43. 31.
    R. A. Wolkow, Phys. Rev. Lett. 68:2636 (1992).ADSCrossRefGoogle Scholar
  44. 32.
    K. Cho and J. D. Joannopoulos, Phys. Rev. Lett. 71:1387 (1993).ADSCrossRefGoogle Scholar
  45. 33.
    T. Vichon, A. M. Oies, D. Spanjaard and M. C. Desjonquères, Surf Sci. 287/288:534 (1993).ADSCrossRefGoogle Scholar
  46. 34.
    W. Frotzheim, in: “The Chemical Physics of Solid and Heterogeneous Catalysis,” Vol. 5, B. A. King and D. W. Woodruff, eds., Elsevier, Amsterdam (1988), p215.T. M. Mayer, M. S. Ameen and D. J. Vitkavage, ibid, p427.Google Scholar
  47. H. S. Winters and J. W. Coburn, Surf Sci. Rep. 14:161 (1992).ADSCrossRefGoogle Scholar
  48. 35.
    K. Asakawa and S. Sugata, J. Vac. Sci. Technol. B3:402 (1985).Google Scholar
  49. S. J. Pearton, U. K. Chakrabarti, W. S. Hobson and A. P. Kinsella, J. Vac. Sci. Technol. B8:607 (1990).Google Scholar
  50. 36.
    P. A. Moka and D. J. Ehrlich, Appl. Phys. Lett. 55:91 (1989).ADSCrossRefGoogle Scholar
  51. 37.
    B. I. Craig and P. V. Smith, Surf Sci. 210:468 (1989).ADSCrossRefGoogle Scholar
  52. 38.
    M. Dupuis, D. Spangler, and J. J. Wendoloski, National Resource for Computations in Chemistry Software Catalog, University of California: Berkeley, CA (1980), Program QG01. M. W. Schmidt et al., QCPE Bulletin, 10:52 (1990).Google Scholar
  53. 39.
    M. J. Frisch et al., “Gaussian ′90,” Gaussian Inc., Pittsburgh, (1990).Google Scholar
  54. 40.
    R. Dovesi et al., “Crystal ′92,” University of Turin, (1992).Google Scholar
  55. 41.
    See, for example, X. M. Zheng and P. V. Smith, Surf. Sci. 279:127 (1992) and references therein.ADSCrossRefGoogle Scholar
  56. 42.
    C. G. Van de Walle, F. R. McFeely and S. T. Pantelides, Phys. Rev. Lett. 61:1867 (1988).ADSCrossRefGoogle Scholar
  57. 43.
    P. J. Van der Hoek, W. Ravenek and E. J. Baerend, Phys. Rev. B38:1208 (1988).Google Scholar
  58. 44.
    P. C. Weakliem, C. J. Wu, and E. A. Carter, Phys. Rev. Letters69:200 (1992).ADSCrossRefGoogle Scholar
  59. 45.
    C. J. Wu and E. A. Carter, Phys. Rev. B45:9065 (1992).ADSCrossRefGoogle Scholar
  60. 46.
    A. L. Johnson, M. M. Walczak and T. E. Madey, Langmuir4:277 (1988).CrossRefGoogle Scholar
  61. 47.
    M. J. Bozack, M. J. Dresser, W. J. Choyke, P. A. Taylor and J. T. Yates Jr., Surf. Sci. 184:L332 (1987).ADSCrossRefGoogle Scholar
  62. 48.
    S. L. Bennett, C. L. Greenwood and E. M. Williams, Surf Sci. 290:267 (1993).ADSCrossRefGoogle Scholar
  63. 49.
    T. Hashizume, K. Motai, Y. Hasegawa, L. Sumita, H. Tanaka, S. Amano, S. Hydo and T. Sakurai, J. Vac. Sci. Technol. B9:745 (1991).Google Scholar
  64. 50.
    R. Cao, X. Yangand, P. Pianetta, J. Vac. Sci. Technol. B11:1455 (1993).Google Scholar
  65. 51.
    C. J. Wu and E. A. Carter, J. A mer. Chem. Soc. 113:9061 (1991).CrossRefGoogle Scholar
  66. 52.
    B. I. Craig and P. V. Smith, Surf. Sci. 262:235 (1992).ADSCrossRefGoogle Scholar
  67. 53.
    J. J. Boland, private communication.Google Scholar
  68. 54.
    J. E. Rowe, G. Margaritondo and S. B. Christman, Phys. Rev. B16:1581 (1977).ADSCrossRefGoogle Scholar
  69. 55.
    N. Aoto, E. Ihawa and Y. Kuragi, Surf Sci. 199:408 (1988).ADSCrossRefGoogle Scholar
  70. 56.
    G. Thornton, P. L. Wincott, R. McGrath, I. T. McGovern, F. M. Quinn, D. Norman and D. D. Vvedensky, Surf Sci. 211/212:959 (1989).ADSCrossRefGoogle Scholar
  71. 57.
    L. S. O. Johansson, R. I. G. Uhrberg, R. Lindsay, P. L. Wincott and G. Thornton, Phys. Rev. B42:9534 (1990).ADSCrossRefGoogle Scholar
  72. 58.
    C. C. Cheng, Q. Gao, W. J. Choyke and J. T. Yates, Jr., Phys. Rev. B46:12810 (1992).ADSCrossRefGoogle Scholar
  73. 59.
    D. Purdic, C. A. Muryn, N. S. Prakash, K. G. Purcell, P. L. Wincott, G. Thornton and D. S. L. Law, J. Phys. Cond. Matt. 3:7751 (1991).ADSCrossRefGoogle Scholar
  74. 60.
    J. T. Yates, Jr., M. D. Alvey, M. J. Dresser, M. A. Henderson, M. Kiskinova, R. D. Ramsier and A. Szabó, Science255:1397 (1992).ADSCrossRefGoogle Scholar
  75. 61.
    P. Kruger and J. Pollman, Phys. Rev. B 47:1898 (1993).ADSCrossRefGoogle Scholar
  76. 62.
    B. I. Craig and P. V. Smith, Surf. Sci. Lett. 290:L662 (1993).ADSCrossRefGoogle Scholar
  77. 63.
    F. H. Stillinger and T. A. Weber, Phys. Rev. Lett. 62:2144 (1989).ADSCrossRefGoogle Scholar
  78. T. A. Schoolcraft and B. J. Garrison, J. Vac. Sci. Technol. A8:3496 (1990).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. V. Smith
    • 1
  • M. W. Radny
    • 1
  • A. J. Dyson
    • 1
  1. 1.Physics DepartmentUniversity of NewcastleCallaghanAustralia

Personalised recommendations