Advertisement

Friedel Oscillations in Condensed Matter Calculations

  • John F. Dobson

Abstract

Friedel oscillations1 are spatial modulations of the electron density n(r) which occur in microscopic zero-temperature calculations of metallic properties, whenever the metal is subject to a local disturbance. Static Friedel oscillations take the form of a standing-wavelike perturbation in the electron density, falling off with distance from the disturbance. These oscillations are most clearly derived in the jellium model in which the positive metal ions are represented by a uniform positive background. This suppresses periodic crystalline density oscillations and leaves the Friedel oscillations plainly visible. One example is provided by the electron density profile n(z) in calculations2 of the jellium metal surface (Fig. 1): here the surface itself constitutes the “disturbance”, and the wavenumber of the oscillations is twice the Fermi momentum in the bulk metal, 2kF. The oscillations die as z−2 where −z is the depth into the metal.

Keywords

Fermi Surface Density Perturbation Jellium Model Derivative Discontinuity Screening Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Friedel, Phil. Mag. 43, 153 (1952).zbMATHGoogle Scholar
  2. 2.
    N.D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970).ADSCrossRefGoogle Scholar
  3. N.D. Lang, Adv. Sol. State Phys. 28, 225 (1973).ADSGoogle Scholar
  4. 3.
    W.A. Harrison, “Solid State Theory”, McGraw Hill, New York 1970, p. 299.Google Scholar
  5. 4.
    E. Bruno & B. L. Gyorffy PRL 71, 181 (1993).ADSCrossRefGoogle Scholar
  6. L.M. Roth, H.J. Zeigler and T.A. Kaplan, Phys. Rev. 149, 519 (1966)ADSCrossRefGoogle Scholar
  7. 5.
    W. Kohn, Phys. Rev. Lett. 2, 393 (1959).ADSCrossRefGoogle Scholar
  8. 6.
    J.M. Ziman, “Principles of the Theory of Solids”, Cambridge University Press, Cambridge, 1972.Google Scholar
  9. 7.
    W.R. Bennet, W. Schwarzacher and W.F. Egelhoff, Phys. Rev. Lett. 65, 3169 (1990).ADSCrossRefGoogle Scholar
  10. 8.
    J. Unguris, RJ. Celotta and D. T. Pierce, Phys. Rev. Lett. 67, 140 (1991).ADSCrossRefGoogle Scholar
  11. 9.
    P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991): Phys. Rev. B 46, 261 (1992).ADSCrossRefGoogle Scholar
  12. 10.
    V. Grolier, D. Renard, B. Bartenlian, P. Beauvillain, C. Chappert, C. Dupas, J. Ferr é, M. Galtier, E. Kolb, M. Mulloy, J.P. Renard and P. Veillet, Phys. Rev. Lett 71, 3023 (1993).ADSCrossRefGoogle Scholar
  13. 11.
    N.E. Bickers, DJ. Scalapino and R.T. Scalettar, Internat. J. Mod. Phys. B 1, 687 (1987).ADSCrossRefGoogle Scholar
  14. N.E. Bickers, DJ. Scalapino and S.R. White, Phys. Rev. Lett. 62, 961 (1989).ADSCrossRefGoogle Scholar
  15. 12.
    F.K. Schulte, Surf. Sci. 55, 427 (1976).ADSCrossRefGoogle Scholar
  16. 13.
    J.F. Dobson, Phys. Rev. B 46, 10163 (1992).ADSCrossRefGoogle Scholar
  17. 14.
    W. Kohn and L.J. Sham, Phys. Rev. 137, A1697 (1965).MathSciNetADSCrossRefGoogle Scholar
  18. 15.
    K.-D. Tsuei, E.W. Plummer and PJ. Feibelman, Phys. Rev. Lett. 63, 2256 (1989).ADSCrossRefGoogle Scholar
  19. 16.
    K.-D. Tsuei, E.W. Plummer, A. Liebsch, K. Kempa and P. Bakshi, Phys. Rev. Lett. 64, 44 (1990).ADSCrossRefGoogle Scholar
  20. 17.
    P.R. Pinsukanjana, E.G. Gwinn, J.F. Dobson, E.L. Yuh, N.G. Asmar, M. Sundaram, and A.C. Gossard, Phys. Rev. B 46, 7284 (1992).ADSCrossRefGoogle Scholar
  21. 18.
    W. Kohn and LJ. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  22. 19.
    A.L. Fetter and J.D. Walecka, “Quantum Theory of Many-Particle Systems”, McGraw-Hill, New York 1971.Google Scholar
  23. 20.
    T. Ando, Z. Phys. B 26, 263 (1977).ADSCrossRefGoogle Scholar
  24. 21.
    A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).ADSCrossRefGoogle Scholar
  25. 22.
    E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).ADSCrossRefGoogle Scholar
  26. 23.
    E.K.U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985): erratum ibid., 57, 923 (1986).ADSCrossRefGoogle Scholar
  27. N. Iwamoto and E.K.U. Gross, Phys. Rev. B 35, 3003 (1987).ADSCrossRefGoogle Scholar
  28. 24.
    J.F. Dobson and G. H. Harris, J. Phys. C: Solid St. Phys. 21, L729 (1988).ADSCrossRefGoogle Scholar
  29. 25.
    B.NJ. Persson, J. Phys. C: Solid St. Phys. 13, 435 (1980).ADSCrossRefGoogle Scholar
  30. 26.
    PJ. Feibelman, Prog. Surf. Sci. 12, 287 (1982).ADSCrossRefGoogle Scholar
  31. 27.
    PJ. Feibelman, Phys. Rev. B 9, 5077 (1974): Phys. Rev. B 12, 1319 (1975).ADSCrossRefGoogle Scholar
  32. 28.
    J.F. Dobson and G.H. Harris, J. Phys. C: Solid St. Phys 19, 3971 (1986).ADSCrossRefGoogle Scholar
  33. 29.
    K. Kempa and W.L. Schaich, Phys. Rev. B 34, 547 (1986).ADSCrossRefGoogle Scholar
  34. 30.
    K. Kempa and W.L. Schaich, Phys. Rev. B 37, 6711 (1988).ADSCrossRefGoogle Scholar
  35. 31.
    K. Kempa, A. Liebsch and W.L. Schaich, Phys. Rev. B 38, 12645 (1988).ADSCrossRefGoogle Scholar
  36. 32.
    A. Liebsch, Phys. Rev. B 36, 7378 (1987).ADSCrossRefGoogle Scholar
  37. 33.
    K.J. Song, D. Heskett, H.L. Dai, A. Liebsch, and E.W. Plummer, Phys. Rev. Lett. 61, 1380 (1988).ADSCrossRefGoogle Scholar
  38. 34.
    K. Burke and W.L. Schaich, Phys. Rev. B 48, 14599 (1993).ADSCrossRefGoogle Scholar
  39. 35.
    W.L. Schaich, private communication (1993).Google Scholar
  40. 36.
    A. Liebsch, Phys. Rev. Lett. 67, 2858 (1991).ADSCrossRefGoogle Scholar
  41. 37.
    G.H. Harris “Electronic properties of juxtaposed metal surfaces”, Ph.D. thesis, Griffith University, Nathan, Queensland Australia 1992.Google Scholar
  42. 38.
    A.G. Eguiluz, Phys. Rev. Lett. 51, 1907 (1983).ADSCrossRefGoogle Scholar
  43. 39.
    R.S. Sorbello, Solid State Commun. 56, 821 (1985): ibid 48, 989 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • John F. Dobson
    • 1
  1. 1.Faculty of Science and TechnologyGriffith UniversityNathanAustralia

Personalised recommendations