Large-Scale Electronic Structure Calculations in Solids

  • Paolo Giannozzi


Electronic-structure calculations in solids have considerably evolved from early approaches (band structure calculations in periodic model potentials, aimed at reproducing simple crystals) into very sophisticated and powerful techniques. These techniques usually require no or very little experimental input beyond the basic information on atomic composition and some structural data. This is the origin of the (perhaps too ambitious) definitions of ab-initio, or first-principles, or (perhaps more appropriately) parameter-free, which usually label these techniques. In conjunction with the enormous increase in computer power (and the decrease in computer prices), ab-initio methods now allow us to accurately reproduce and even to predict electronic and structural properties of real materials, and not just the simplest ones. This predictive power makes a strong case in favour of ab-initio methods, whenever they are applicable, with respect to empirical or semiempirical methods. These are far less computationally demanding but also less reliable.


Plane Wave Brillouin Zone Local Density Approximation Core State Quantum Molecular Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See e.g. Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N. H. March (Plenum, New York, 1983); Density Functional Theory of Atoms and Molecules, R.G. Parr and W. Yang (Oxford University Press, New York, 1989); R.M. Dreizler and E.K.U. Gross, Density Functional Theory, Springer-Verlag, Berlin (1990).Google Scholar
  2. [2]
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    E.P. Wigner, Trans. Faraday Soc. 34, 678 (1938).CrossRefGoogle Scholar
  5. [5]
    D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).ADSCrossRefGoogle Scholar
  6. [6]
    J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).ADSCrossRefGoogle Scholar
  7. [7]
    G. Ortiz and P. Ballone, Europhys. Lett. 23, 7 (1993); G. Ortiz and P. Ballone, to be published (1994).ADSCrossRefGoogle Scholar
  8. [8]
    R.O. Jones and O. Gunnarson, Rev. Mod. Phys. 61, 689 (1989).ADSCrossRefGoogle Scholar
  9. [9]
    O.K. Andersen, O. Jepsen, and M. Sob, in: Electronic Band Structure and Its Applications, edited by M. Yussouf (Springer, Berlin 1987), p. 1.CrossRefGoogle Scholar
  10. [10]
    W.E. Pickett, Computer Phys. Reports 9, 115 (1989).ADSCrossRefGoogle Scholar
  11. [11]
    A.D. Becke, Phys. Rev. A 38, 3098 (1988).ADSCrossRefGoogle Scholar
  12. [12]
    H. Hellmann, Einfühlung in die Quantenchemie (Deuticke, Leipzig, 1937).Google Scholar
  13. R.P. Feynman, Phys. Rev. 56, 340 (1939).ADSzbMATHCrossRefGoogle Scholar
  14. [13]
    I. Stich, R. Car, M. Parrinello, and S. Baroni, Phys. Rev. B 39, 4997 (1989).ADSCrossRefGoogle Scholar
  15. [14]
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes, 2nd ed., Cambridge University Press (1991).Google Scholar
  16. [15]
    M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).ADSCrossRefGoogle Scholar
  17. [16]
    J. Hutter, H.P. Liithi, and M. Parrinello, Comput. Mat. Sci., in press (1994).Google Scholar
  18. [17]
    R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).ADSCrossRefGoogle Scholar
  19. [18]
    G. Galli and A. Pasquarello, in Computer Simulation in Chemical Physics, edited by M.P. Allen and D.J. Tildesley (Kluwer, Amsterdam, 1993), p. 261.CrossRefGoogle Scholar
  20. [19]
    P. Pulay, Mol. Phys. 17, 197 (1969).ADSCrossRefGoogle Scholar
  21. [20]
    R. Yu, D. Singh, and H. Krakauer, Phys. Rev. B 43, 6411, (1991).ADSCrossRefGoogle Scholar
  22. M. Methfessel and M. van Schilfgaarde, Phys. Rev. B 48, 4937 (1993).ADSCrossRefGoogle Scholar
  23. [21]
    E. Fermi, Nuovo Cimento 11, 157 (1934).zbMATHCrossRefGoogle Scholar
  24. [22]
    See the papers in Solid State Physics, edited by H.E. Ehrenreich, F. Seitz, and D. Turnbull, vol.24 (Academic Press, New York, 1970).Google Scholar
  25. [23]
    D.R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).ADSCrossRefGoogle Scholar
  26. [24]
    G.B. Bachelet, D.R. Hamann and M. Schlüter, Phys. Rev. B 26, 4199 (1982).ADSCrossRefGoogle Scholar
  27. [25]
    A subtle point about the validity of frozen-core approximation is discussed in U. von Barth and C.G. Gelatt, Phys. Rev. B 21, 2222 (1980).ADSCrossRefGoogle Scholar
  28. [26]
    A. Baldereschi, Phys. Rev. B 7, 5212 (1973).ADSCrossRefGoogle Scholar
  29. [27]
    D.J. Chadi and M.L. Cohen, Phys. Rev. B 8, 5747 (1973).MathSciNetADSCrossRefGoogle Scholar
  30. H.J. Monkhorst and.I.D. Pack, Phys. Rev. B 13, 5188 (1976).MathSciNetADSCrossRefGoogle Scholar
  31. [28]
    Two recent references on this subjects: M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).ADSCrossRefGoogle Scholar
  32. J. Hama, M. Watanabe, and T. Kato, J. Phys.: Condens. Matter 2, 7445 (1990).ADSCrossRefGoogle Scholar
  33. [29]
    D.G. Anderson, J. Assoc. Comput. Mach. 12, 547 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  34. [30]
    D.D. Johnson, Phys. Rev. B 38, 12807 (1988).ADSCrossRefGoogle Scholar
  35. [31]
    For an introduction: W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia (1987).Google Scholar
  36. [32]
    S. Baroni and M. Buongiorno Nardelli, unpublished.Google Scholar
  37. [33]
    E. Anderson et al, LAPACK Users’ Guide, SIAM (Philadelphia, 1992).Google Scholar
  38. [34]
    For a recent review, see E.R. Davidson, Computer Phys. Commun. 53, 49 (1989).ADSzbMATHCrossRefGoogle Scholar
  39. [35]
    N. Troullier and J.L. Martins, Phys. Rev. B 43, 8861 (1991).ADSCrossRefGoogle Scholar
  40. [36]
    R.D. King-Smith, M.C. Payne, and J.S. Lin, Phys. Rev. B 44, 13063 (1991).ADSCrossRefGoogle Scholar
  41. [37]
    J. Friedel, Adv. Phys. 3, 446 (1954).ADSCrossRefGoogle Scholar
  42. F.J. Dyson, unpublished, as quoted in: C. Kittel, Quantum theory of Solids (Wiley, New York, 1963), p. 339.Google Scholar
  43. [38]
    W. Yang, Phys. Rev. Lett. 66, 1438 (1991).ADSCrossRefGoogle Scholar
  44. W. Yang, Phys. Rev. A 44, 7823 (1991).ADSCrossRefGoogle Scholar
  45. [39]
    G. Galli and M. Parrinello, Phys. Rev. Lett 69, 3547 (1992).ADSCrossRefGoogle Scholar
  46. F. Mauri, G. Galli, and R. Car, Phys. Rev. B 47, 9973 (1993).ADSCrossRefGoogle Scholar
  47. F. Mauri and G. Galli, Phys. Rev. B, in press (1994).Google Scholar
  48. P. Ordejón, D.A. Drabold, M.P. Grumbach, and R.M. Martin, Phys. Rev. B 48, 14646 (1993).ADSCrossRefGoogle Scholar
  49. [40]
    X.-P. Li, R.W. Nunes, and D. Vanderbilt, Phys. Rev. B 47, 10891 (1993).; S. Goedecker, preprint; M. Daw (unpublished).ADSCrossRefGoogle Scholar
  50. [41]
    D.A. Drabold and O.F. Sankey, Phys. Rev. Lett. 70, 3631 (1993).ADSCrossRefGoogle Scholar
  51. [42]
    S. Baroni and P. Giannozzi, Europhys. Lett. 17, 547 (1992).ADSCrossRefGoogle Scholar
  52. [43]
    For a review, see: Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1980), Vol. 35.Google Scholar
  53. [44]
    A. Franceschetti and S. Baroni, unpublished; A. Franceschetti, Ph.D. Thesis, SISSA-Trieste, 1993 (unpublished).Google Scholar
  54. [45]
    D. Vanderbilt, Phys. Rev B 41, 7892 (1990).ADSCrossRefGoogle Scholar
  55. [46]
    F. Gygi, Europhys. Lett. 19, 617 (1992).ADSCrossRefGoogle Scholar
  56. [47]
    K. Cho, A. Arias, J.D. Joannopoulos, and P.K. Lam, Phys. Rev. Lett. 71, 1808 (1993).ADSCrossRefGoogle Scholar
  57. [48]
    I. Stich, M.C. Payne, R.D. King-Smith, J.-S. Lin, and L.J. Clarke, Phys. Rev. Lett. 68, 1351 (1992).ADSCrossRefGoogle Scholar
  58. K. Brommer, M. Needels, B. Larson, and J.D. Joannopoulos, Phys. Rev. Lett. 68, 1355 (1992).ADSCrossRefGoogle Scholar
  59. [49]
    G. Kerker, J. Phys. C 13, L189 (1980).ADSCrossRefGoogle Scholar
  60. [50]
    U. von Barth and R. Car, unpublished.Google Scholar
  61. [51]
    S.G. Louie, S. Froyen, and M.L. Cohen, Phys. Rev. B 26, 1738 (1982).ADSCrossRefGoogle Scholar
  62. [52]
    D.R. Hamann, Phys. Rev. B 40, 2980 (1989).ADSCrossRefGoogle Scholar
  63. [53]
    E.L. Shirley, D.C. Allan, R.M. Martin, and J.D. Joannopoulos, Phys. Rev. B 40, 3652 (1989).ADSCrossRefGoogle Scholar
  64. [54]
    G. Ortiz and P. Ballone, Phys. Rev. B 43, 6376 (1991).ADSCrossRefGoogle Scholar
  65. [55]
    E.L. Shirley and R.M. Martin, Phys. Rev. B 47, 15413 (1993).ADSCrossRefGoogle Scholar
  66. [56]
    L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).ADSCrossRefGoogle Scholar
  67. [57]
    X. Gonze, P. Kaeckell, and M. Schemer, Phys. Rev. B 41, 12264 (1990).ADSCrossRefGoogle Scholar
  68. X. Gonze, R. Stumpf, and M. Scheffler, Phys. Rev. B 44, 8503 (1991).ADSCrossRefGoogle Scholar
  69. [58]
    N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).ADSCrossRefGoogle Scholar
  70. [59]
    K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt, Phys. Rev. B 47, 10142 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Paolo Giannozzi
    • 1
  1. 1.Scuola Normale SuperiorePisaItaly

Personalised recommendations