Skip to main content

Density Functionals, Molecular Dynamics, and More

  • Chapter
  • 222 Accesses

Abstract

The Third Gordon Godfrey Workshop addresses the role of computational methods in understanding (and developing) new materials. There is no doubt that these methods, particularly the use of computer simulations, will play a very important role in developing our understanding of the structures and properties of molecules, clusters, and bulk materials with complex structures. In the present chapter, I shall focus on methods for calculating the stable structures of such systems, the problems that must be faced, and ways of overcoming them. I shall show that the combination of density functional and molecular dynamics schemes provides a powerful way of calculating structures, although it is by no means the answer to all our problems in this area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Hoffmann, Scientific American, February 1993, p. 40.

    Google Scholar 

  2. F. Crick, in: What mad pursuit, Penguin, London (1988), p. 150.

    Google Scholar 

  3. R.O. Jones, J. Chem. Phys. 82: 325 (1985).

    Article  ADS  Google Scholar 

  4. T.P. Martin, T. Bergmann, and B. Wassermann: in Microclusters, Proceedings of the First NEC Symposium, Tokyo, 1986, S. Sugano, Y. Nishina and S. Ohnishi, eds., Springer, Berlin (1987), p. 152.

    Google Scholar 

  5. A. Cayley, Phil Mag. (4)47: 444 (1874).

    Google Scholar 

  6. A.C. Lunn and J.K. Senior, J. Phys. Chem. 33: 1027 (1929).

    Article  Google Scholar 

  7. G. Polyá, Acta Math. 68: 145 (1937).

    Article  Google Scholar 

  8. M.R. Hoare and J.A. Mclnnes, Adv. Phys. 32: 791 (1983).

    Article  ADS  Google Scholar 

  9. L.T. Wille and J. Vennik, J. Phys. A 18: L419, L1113 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  10. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco (1979).

    Google Scholar 

  11. S. Kirkpatrick, CD. Gelatt, and M.P. Vecchi, Science 220: 671 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61: 689 (1989).

    Article  ADS  Google Scholar 

  13. R. Car and M. Parrinello, Phys. Rev. Lett. 55: 2471 (1985).

    Article  ADS  Google Scholar 

  14. F. Stillinger, T.A. Weber, and R.A. LaViolette, J. Chem. Phys. 85: 6460 (1986).

    Article  ADS  Google Scholar 

  15. K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York (1979).

    Google Scholar 

  16. F.H. Stillinger and T.A. Weber, J. Phys. Chem. 91: 4899 (1987).

    Article  Google Scholar 

  17. D. Hohl, R.O. Jones, R. Car, and M. Parrinello, J. Chem. Phys. 89: 6823 (1988).

    ADS  Google Scholar 

  18. See, for example, H. Margenau and G.M. Murphy, Mathematics of Physics and Chemistry, Van Nostrand, New York (1955).

    Google Scholar 

  19. P. Hohenberg and W. Kohn, Phys. Rev. 136: B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  20. W. Kohn and L.J. Sham, Phys. Rev. 140: A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  21. J. Harris and R.O. Jones, J. Phys. F 4: 1170 (1974).

    Article  ADS  Google Scholar 

  22. D.C. Langreth and J.P. Perdew, Solid State Commun. 17: 1425 (1975).

    Article  ADS  Google Scholar 

  23. O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13: 4274 (1976).

    Article  ADS  Google Scholar 

  24. J. Harris, Phys. Rev. A 29: 1648 (1984).

    Article  ADS  Google Scholar 

  25. J.C. Slater, Quantum Theory of Atomic Structure, Vol. II, McGraw-Hill, New York (1960), Appendix 21.

    Google Scholar 

  26. O. Gunnarsson and R.O. Jones, Phys. Rev. B 31: 7588 (1985).

    Article  ADS  Google Scholar 

  27. G.B. Bachelet, D.R. Hamann, and M. Schlüter, Phys. Rev. B 26: 4199 (1982).

    Article  ADS  Google Scholar 

  28. R. Stumpf, X. Gonze, and M. Scheffler, Research Report, Fritz-Haber-Institut, Berlin (April, 1990), unpublished.

    Google Scholar 

  29. L. Verlet, Phys. Rev. 159: 2471 (1967).

    Google Scholar 

  30. J. Donohue, The Structures of the Elements, Wiley, New York (1974), Chapters 8 [group Va] and 9 [group Via].

    Google Scholar 

  31. R. Steudel, in: Studies in Inorganic Chemistry, Vol. 5, A. Müller and B. Krebs, eds., Elsevier, Amsterdam (1984).

    Google Scholar 

  32. R. Steudel and E.M. Strauss, in: The Chemistry of Inorganic Homo-and Heterocycies, Vol. 2, Academic, London (1987), p. 769.

    Google Scholar 

  33. H. Bitterer, ed., Schwefel: Gmelin Handbuch der Anorganischen Chemie, 8. Aufl., Ergänzungsband 3, Springer, Berlin (1980), p. 8.

    Google Scholar 

  34. K. Raghavachari, CM. Rohlfing, and J.S. Binkley, J. Chem. Phys. 93: 5862 (1990).

    Article  ADS  Google Scholar 

  35. R. Steudel, T. Sandow, and J. Steidel, Z. Naturforsch. Teil B 40: 594 (1985).

    Google Scholar 

  36. R. Steudel, Angew. Chem. 87: 683 (1975) [Angew. Chem. Int. Edit. Engl. 14: 655 (1975)]; Z. Naturforsch. Teil B 38: 543 (1983).

    Article  Google Scholar 

  37. R. Steudel, T. Sandow, and R. Reinhardt, Angew. Chem. 89: 757 (1983) [Angew. Chem. Int. Edit. Engl. 16: 716 (1983)].

    Article  Google Scholar 

  38. L. Pauling, Proc. Nat. Acad. Sci. USA 35: 495 (1949).

    Article  ADS  Google Scholar 

  39. F. Tuinstra, Structural Aspects of the Allotropy of Sulphur and Other Divalent Elements, Delft (1967).

    Google Scholar 

  40. D. Hohl, R.O. Jones, R. Car, and M. Parrinello, Chem. Phys. Lett. 139: 540 (1987).

    Article  ADS  Google Scholar 

  41. R.O. Jones and D. Hohl, J. Am. Chem. Soc. 112: 2590 (1990).

    Article  Google Scholar 

  42. J. Harris and R.O. Jones, Phys. Rev. A 19: 1813 (1979).

    Article  ADS  Google Scholar 

  43. R. Steudel and T. Sandow, Angew. Chem. 90: 644 (1978); Angew. Chem. Int. Ed. Engl. 17: 611 (1978).

    Article  Google Scholar 

  44. R.O. Jones, Inorg. Chem., to be published.

    Google Scholar 

  45. R. Steudel, Phosphorus and Sulphur 23: 44 (1985).

    Google Scholar 

  46. See, for example, C. Romers, C. Altona, H.R. Buys, and E. Havinga, Top. Stereochem. 4: 39 (1969).

    Article  Google Scholar 

  47. D.E.C. Corbridge, Phosphorus. An Outline of its Chemistry, Biochemistry and Technology, Elsevier, Amsterdam (1985).

    Google Scholar 

  48. T.P. Martin, Z. Phys. D 3: 221 (1986).

    Article  ADS  Google Scholar 

  49. R.O. Jones and D. Hohl, J. Chem. Phys. 92: 6710 (1990)

    Article  ADS  Google Scholar 

  50. R.O. Jones and G. Seifert, J. Chem. Phys. 96: 7564 (1992).

    Article  ADS  Google Scholar 

  51. P. Ballone and R.O. Jones, to be published.

    Google Scholar 

  52. H. Thurn and H. Krebs, Acta Cryst. B 25: 125 (1969).

    Article  Google Scholar 

  53. P.E. Eaton and T.W. Cole, Jr., J. Am. Chem. Soc. 86: 962, 3157 (1964).

    Article  Google Scholar 

  54. L. Cassar, P.E. Eaton, and J. Halpern, J. Am. Chem. Soc. 92: 6366 (1970).

    Article  Google Scholar 

  55. R. Janoschek, Chem. Ber. 125: 2687 (1992).

    Article  Google Scholar 

  56. M. Häser, U. Schneider, and R. Ahlrichs, J. Am. Chem. Soc. 114: 9551 (1992).

    Article  Google Scholar 

  57. See, for example, A.D. Becke, J. Chem. Phys. 96: 2155 (1992).

    Article  ADS  Google Scholar 

  58. B.G. Johnson, P.M.W. Gill, and J.A. Pople, J. Chem. Phys. 97: 7846 (1992).

    Article  ADS  Google Scholar 

  59. D.E.C. Corbridge, The Structural Chemistry of Phosphorus, Elsevier, Amsterdam (1974).

    Google Scholar 

  60. R.O. Jones and G. Seifert, J. Chem. Phys. 96: 2942 (1992).

    Article  ADS  Google Scholar 

  61. See, for example, R.S. Mulliken, J. Phys. Chem. 56: 295 (1952) and references therein.

    Article  Google Scholar 

  62. D.M. Cox, D.J. Trevor, R.L. Whetten, E.A. Rohlfing, and A. Kaldor, J. Chem. Phys. 84: 4651 (1986)[n = 2-25].

    Article  ADS  Google Scholar 

  63. D.M. Cox, D.J. Trevor, R.L. Whetten, and A. Kaldor, J. Phys. Chem. 92: 421 (1988)[n = 2-13].

    Article  Google Scholar 

  64. W.A. de Heer, P. Milani, and A. Châtelain, Phys. Rev. Lett. 63: 2834 (1989) [up to n = 61].

    Article  ADS  Google Scholar 

  65. M.F. Jarrold, J.E. Bower, and J.S. Kraus, J. Chem. Phys. 86: 3876 (1987) [n = 3-26].

    Article  ADS  Google Scholar 

  66. L. Hanley, S.A. Ruatta, and S.L. Anderson, J. Chem. Phys. 87: 260 (1987) [n = 2-7].

    Article  ADS  Google Scholar 

  67. G. Ganteför, M. Gausa, K.H. Meiwes-Broer, and H.O. Lutz, Z. Phys. D 9: 253 (1988) [n =3-14].

    Article  ADS  Google Scholar 

  68. K.J. Taylor, CL. Pettiette, M.J. Craycraft, O. Chesnovsky, and R.E. Smalley, Chem. Phys. Lett. 152: 347 (1988) [n = 3-32].

    Article  ADS  Google Scholar 

  69. C.Y. Cha, G. Ganteför, and W. Eberhardt, J. Chem. Phys. 100 (1994), in press).

    Google Scholar 

  70. S.C. O’Brien, Y. Liu, Q. Zhang, J.R. Heath, F.K. Tittel, R.F. Curl, and R.E. Smalley, J. Chem. Phys. 84: 4074 (1986).

    Article  ADS  Google Scholar 

  71. R.O. Jones, Phys. Rev. Lett. 67: 224 (1991); J. Chem. Phys. 99: 1194 (1993).

    Article  ADS  Google Scholar 

  72. H.G. von Schnering and R. Nesper, Acta Chem. Scand. 45: 870 (1991).

    Article  Google Scholar 

  73. K.K. Sunil and K.D. Jordan, J. Phys. Chem. 92: 2774 (1988).

    Article  Google Scholar 

  74. C.W. Bauschlicher, Jr., H. Partridge, S.R. Langhoff, P.R. Taylor, and S.P. Walch, J. Chem. Phys. 86: 7007 (1987).

    Article  ADS  Google Scholar 

  75. U. Meier, S.D. Peyerimhoff, and F. Grein, Z. Phys. D 17: 209 (1990).

    Article  ADS  Google Scholar 

  76. M.F. Cai, T.P. Djugan, and V.E. Bondybey, Chem. Phys. Lett. 155: 430 (1989).

    Article  ADS  Google Scholar 

  77. M. Dupuis and B. Liu, J. Chem. Phys. 68: 2902 (1978).

    Article  ADS  Google Scholar 

  78. V.A. Polukhin and M.M. Dzugotov, Phys. Met. Metall. 51: 50 (1981).

    Google Scholar 

  79. J. Hafner, J. Non-Crystalline Solids 117/118: 18 (1990).

    Article  ADS  Google Scholar 

  80. The multiplet averaged values are B 3.57 eV; Al 3.47 eV; Ga 4.71 eV; In 4.35 eV; Tl 5.64 eV. See C.E. Moore, Atomic Energy Levels, National Bureau of Standards Circular 467, USGPO, Washington. Vol. I (1949), Vol. II (1952), Vol. III (1958).

    Google Scholar 

  81. J.P. Desclaux, At. Data Nucl. Data Tables 12: 311 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jones, R.O. (1995). Density Functionals, Molecular Dynamics, and More. In: Neilson, D., Das, M.P. (eds) Computational Approaches to Novel Condensed Matter Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9791-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9791-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9793-0

  • Online ISBN: 978-1-4757-9791-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics