Introduction to Quantum Monte Carlo Simulations of Electronic Systems

  • Richard M. Martin
  • Vincent D. Natoli


Monte Carlo statistical methods have a unique role in computational physics because random sampling can be used to carry out exact or nearly exact calculations for many-body systems. The subject of this paper is a brief outline of some of the current developments in applying Monte Carlo methods to quantum problems involving interacting electrons in condensed matter. We will discuss methods and examples, in particular, homogeneous electron systems, the metal-insulator transition in hydrogen at high pressure, and a brief introduction to ab initio calculations on general materials.


Ground State Energy Trial Function Slater Determinant Quantum Monte Carlo Diffusion Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See, for example, (a) Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer, Berlin, 1979); (b) Monte Carlo Methods in Statistical Physics II, edited by K. Binder (Springer, Berlin, 1984).Google Scholar
  2. [2]
    P. W. Anderson, “Basic Notions of Condensed Matter Physics” (Benjamin/Cummings, Menlo Park, CA, 1984).Google Scholar
  3. [3]
    P. Fulde, “Electron Correlation in Molecules and Solids” (Springer, Berlin,1993).CrossRefGoogle Scholar
  4. [4]
    See, for example, W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).ADSCrossRefGoogle Scholar
  5. [5]
    See, for example, papers in “Theory of the Inhomogeneous Electron Gas”, ed. by S. Lundquist and N. H. March (Plenum Press, New York, 1983), and W. E. Pickett, Comput. Phys. Rep. 9, 115 (1989).Google Scholar
  6. [6]
    G. D. Mahan, “Many Particle Physics” (Plenum Press, New York, 1990).CrossRefGoogle Scholar
  7. [7]
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  8. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  9. [8]
    D. M. Ceperley and M. H. Kalos, in Ref. la.Google Scholar
  10. [9]
    K. E. Schmidt and M. H. Kalos, in Ref. 1b.Google Scholar
  11. [10]
    See, for example, references in Ref. [3].Google Scholar
  12. [11]
    D. M. Ceperley, and B. Bernu, J. Chem. Phys. 89, 6318 (1988).ADSCrossRefGoogle Scholar
  13. [12]
    Y. Kwon, R. M. Martin, and D. M. Ceperley, to be published.Google Scholar
  14. [13]
    S. E. Koonin, “Computational Physics” (Benjamin/Cummings, Menlo Park, CA, 1986).Google Scholar
  15. [14]
    H. Gould and J. Tobochnik, “An Introduction to Computer Simulation Methods-Applications to Physical Systems” (Addison-Wesley, Reading, MA, 1988), especially part II.Google Scholar
  16. [15]
    V. D. Natoli, thesis, University of Illinois, 1993, and to be published.Google Scholar
  17. [16]
    R. M. Martin, X. P. Li, E. L. Shirley, L. Mitáš, and D. M. Ceperley, “Quantum Monte Carlo Calculations on Materials: Tests on Crystalline Silicon and the Sodium Dimer”, Invited paper at Seventh Int. Conf. on Progress in Many Body Theories, 1991; published in “Progress in Many Body Theories, Vol. 3”, ed. T. L. Ainsworth, et. al., (Plenum, New York) 1992.Google Scholar
  18. [17]
    R. M. Martin, Y. Kwon, X. P. Li, V. Natoli, L. Mitáš, E. L. Shirley, and D. M. Ceperley, “Quantum Monte Carlo Calculations on Real Materials”, Proceedings of the 1992 Taniguchi Symposium; Springer Series in Solid Sate Physics, Vol. 114, ed. K. Terakura and H. Akai, p 191, 1993.Google Scholar
  19. [18]
    Courant, Friedrichs, and Lewy, Math Ann. 100, 32 (1928).MathSciNetzbMATHCrossRefGoogle Scholar
  20. [19]
    N. Metropolis and S. Ulum, J. Am. Stat. Assn 44, 335 (1949).zbMATHCrossRefGoogle Scholar
  21. [20]
    M. Donskar and M. Kac, in Mark Kac: Probability, Number Theory, and Statistical Physics, Selected Papers, edited by K. Baclawski and M. D. Donsker (MIT Press, Cambridge, Mass., 1979), p. 351.Google Scholar
  22. [21]
    R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981).ADSCrossRefGoogle Scholar
  23. [22]
    J. E. Hirsch, Phys. Rev. B 28, 4059 (1983).ADSCrossRefGoogle Scholar
  24. [23]
    D. M. Ceperley and E. Pollock, Phys. Rev. B 39, 2084 (1989).ADSCrossRefGoogle Scholar
  25. [24]
    D. M. Ceperley, Phys. Rev. Lett. 69, 331 (1992).ADSCrossRefGoogle Scholar
  26. [25]
    D. J. Scalapino, in Proceedings of the Los Alamos Symposium on High Tmpeerature Superconductivity, ed. K. Bedell, et. al., (Addison-Wesley, Redwood City, CA) 1990, p 314.Google Scholar
  27. [26]
    Some authors distinguish between GFMC and DMC. Our DMC calculations use a short time approximation to the Green’s function (see Ref. [44]), and we have tested that the time step is small enough that this is not an essential approximation.Google Scholar
  28. [27]
    W. L. McMillan, Phys. Rev. A 138, 442 (1965).ADSGoogle Scholar
  29. [28]
    D. Schiff and L. Verlet, Phys. Rev. 160, 208 (1967).ADSCrossRefGoogle Scholar
  30. [29]
    C. C. Chang and C. E. Campbell, Phys. Rev. B 15, 4238 (1977).ADSCrossRefGoogle Scholar
  31. [30]
    J. Hansen and D. Levesque, Phys. Rev. 165, 293 (1968).ADSCrossRefGoogle Scholar
  32. [31]
    J. P. Hansen, D. Levesque, and D. Schiff, Phys. Rev. A 3, 776 (1971).ADSCrossRefGoogle Scholar
  33. [32]
    M. H. Kalos, D. Levesque, and L. Verlet, Phys. Rev. A 9, 2178 (1974).ADSCrossRefGoogle Scholar
  34. [33]
    J. P. Hansen and R. Mazighi, Phys. Lett. A 81.Google Scholar
  35. [34]
    D. M. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B 16, 3081 (1977).ADSCrossRefGoogle Scholar
  36. [35]
    D. Ceperley, Phys. Rev. B 18, 3126 (1978).ADSCrossRefGoogle Scholar
  37. [36]
    D. M. Ceperley, and B. J. Alder, Phys. Rev. B 36, 2092 (1987).ADSCrossRefGoogle Scholar
  38. [37]
    X. W. Wang, J., Zhu, S. G. Louie, and S. Fahy, Phys. Rev. Lett. 65, 2414 (1990).ADSCrossRefGoogle Scholar
  39. [38]
    S. Fahy, X. W. Wang and S. G. Louie, Phys. Rev. Lett. 61, 1631 (1988).; Phys. Rev. B42, 3503(1990).ADSCrossRefGoogle Scholar
  40. [39]
    D. Ceperley, J. Comp. Phys. 51, 404 (1983).ADSzbMATHCrossRefGoogle Scholar
  41. [40]
    C. J. Umrigar, K. G. Wilson, J. W. Wilkins, Phys. Rev. Lett. 60, 1719 (1988).ADSCrossRefGoogle Scholar
  42. [41]
    L. Mitáš, E. L. Shirley and D. M. Ceperley, J. Chem. Phys. 95, 3467 (1991).ADSCrossRefGoogle Scholar
  43. [42]
    L. Mitáš, in Computer Simulations in Condensed Matter Physics IV, ed. D. P. Landau, Springer (1992); earlier references on approaches to deal with core electrons and non-local potentials in QMC are given in this paper.Google Scholar
  44. [43]
    Y. Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev. (1993).Google Scholar
  45. [44]
    P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem. Phys. 77, 5593 (1982).ADSCrossRefGoogle Scholar
  46. [45]
    D. M. Ceperley and B. J. Alder, J. Chem. Phys. 81, 5833 (1984).ADSCrossRefGoogle Scholar
  47. [46]
    S. Zhang and M. H. Kalos, Phys. Rev. Lett. 67, 3074 (1991).ADSCrossRefGoogle Scholar
  48. [47]
    M. H. Kalos, preprint.Google Scholar
  49. [48]
    J. B. Anderson, J. Chem. Phys. 63, 1499 (1975); 65, 4121 (1976); 73, 3897 (1980).ADSCrossRefGoogle Scholar
  50. [49]
    D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).ADSCrossRefGoogle Scholar
  51. [50]
    J. W. Moskowitz and K. E. Schmidt, J. Chem. Phys. 85, 2868 (1986).ADSCrossRefGoogle Scholar
  52. [51]
    M. A. Lee and K. E. Schmidt, Computers in Physics 6, 192 (1992).Google Scholar
  53. [52]
    M. H. Kalos, Phys. Rev. 128, 1791 (1962).MathSciNetADSCrossRefGoogle Scholar
  54. [53]
    M. H. Kalos, J. Comp. Phys. 1, 127 (1966).CrossRefGoogle Scholar
  55. [54]
    B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).ADSCrossRefGoogle Scholar
  56. [55]
    M. Lee, K. E. Schmidt, M. H. Kalos, and G. V. Chester, Phys. Rev. Lett. 46, 728 (1981).ADSCrossRefGoogle Scholar
  57. [56]
    R. M. Panoff and J. Carlson, Phys. Rev. Lett. 62, 1130 (1989).ADSCrossRefGoogle Scholar
  58. [57]
    V. Natoli, R. M. Martin, and D. M. Ceperley, Phys. Rev. Letters 70, 1952 (1993).ADSCrossRefGoogle Scholar
  59. [58]
    X. P. Li, R. J. Needs, R. M. Martin, and D. M. Ceperley, Phys. Rev. 45, 6124 (1992).ADSCrossRefGoogle Scholar
  60. [59]
    X. P. Li, D. M. Ceperley, and R. M. Martin, Phys. Rev. 44, 10929 (1991).CrossRefGoogle Scholar
  61. [60]
    M. H. Kalos and P. Whitlock, Monte Carlo Methods (John Wiley and Sons, New York, 1986).zbMATHCrossRefGoogle Scholar
  62. [61]
    W. H. Press and S. A. Teukolsky, Numerical Recipes (Cambridge University Press, Cambridge, 1992).Google Scholar
  63. [62]
    N. Metropolis et al., J. Chem. Phys. 21, 1087 (1953).ADSCrossRefGoogle Scholar
  64. [63]
    M. Allen and D. Tildesley, Computer simulation of liquids (Oxford University Press, Oxford, 1989).Google Scholar
  65. [64]
    D. Ceperley, in Recent progress in many-body theories, edited by J. G. Zabolitsky (Springer-Verlag, Berlin, 1981), p. 262.CrossRefGoogle Scholar
  66. [65]
    C. J. Umrigar, K. J. Runge, and M. P. Nightingale, in Monte Carlo Methods in Theoretical Physics, edited by S. Caracciolo and A. Fabbrocini (ETS, Pisa, 1990), p. 161.Google Scholar
  67. [66]
    D. Ceperley, J. Stat. Phys. 43, 815 (1986).ADSCrossRefGoogle Scholar
  68. [67]
    T. Gaskell, Proc. Roy. Soc. London 77, 1182 (1981).MathSciNetGoogle Scholar
  69. [68]
    W. E. Pickett and J. Q. Broughton, Phys.Rev. 48, 14859, (1993).CrossRefGoogle Scholar
  70. [69]
    G. Ortiz and P. Ballone, Europhys. Lett. 23, 7, (1993).ADSCrossRefGoogle Scholar
  71. [70]
    G. Ortiz and P. Ballone, preprint, 1993.Google Scholar
  72. [71]
    R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).ADSzbMATHCrossRefGoogle Scholar
  73. [72]
    K. E. Schmidt, M. Lee, and M. H. Kalos, Phys. Rev. Lett. 47, 807 (1981).ADSCrossRefGoogle Scholar
  74. [73]
    M. Jonson, J. Phys. C 9, 3055 (1976).ADSCrossRefGoogle Scholar
  75. [74]
    D. L. Freeman, Solid State Commun. 26, 289 (1978).ADSCrossRefGoogle Scholar
  76. [75]
    D. L. Freeman, J. Phys. C 16, 711 (1983).ADSCrossRefGoogle Scholar
  77. [76]
    H. K. Sim, R. Tao, and F. Y. Wu, Phys. Rev. B 34, 7123 (1986).ADSCrossRefGoogle Scholar
  78. [77]
    E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764, (1935).ADSCrossRefGoogle Scholar
  79. [78]
    N. W. Ashcroft, Nature 340, 345 (1989).ADSCrossRefGoogle Scholar
  80. [79]
    E. G. Brovman, Yu Kagan and A. Kholas, Soviet Phys. JETP 34, 1300, (1972); ibid 35, 783, (1972).ADSGoogle Scholar
  81. [80]
    T. W. Barbee, A. Garcia, J. L. Martins and M. L. Cohen, Phys. Rev. Lett. 62, 1150 (1989).ADSCrossRefGoogle Scholar
  82. T. W. Barbee and M. L. Cohen, Phys. Rev. B 44, 11563 (1991).ADSCrossRefGoogle Scholar
  83. [81]
    K. Ebina and H. Miyagi, Phys. Lett. A, 142, 237 (1989).ADSCrossRefGoogle Scholar
  84. [82]
    H. Nagara, J. Phys. Soc. Japan 58, 3861 (1989).ADSCrossRefGoogle Scholar
  85. [83]
    David M. Straus and N. W. Ashcroft, Phys. Rev. Lett. 38, 415, (1977)ADSCrossRefGoogle Scholar
  86. [84]
    See for example A. H. MacDonald and C. P. Burgess, Phys. Rev. B 26, 2849 (1982).ADSCrossRefGoogle Scholar
  87. J. Oliva and N. W. Ashcroft, Phys. Rev. B 23, 6399, (1981).ADSCrossRefGoogle Scholar
  88. K. K. Mon, G. V. Chester and N. W. Ashcroft, Phys. Rev. B 21, 2641 (1980).ADSCrossRefGoogle Scholar
  89. D.M. Ceperley, Simple Molecular Systems at Very High Pressure, Plenum (1988).Google Scholar
  90. [85]
    E. Kaxiras, J. Broughton and R. J. Hemley, Phys. Rev. Lett. 67, 1138 (1991).ADSCrossRefGoogle Scholar
  91. [86]
    G. B. Bachelet, D. M. Ceperley and M. G. B. Chiochetti, Phys. Rev. Lett. 62, 2088 (1989).ADSCrossRefGoogle Scholar
  92. [87]
    D. R. Hamann, M. Schlüter and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).ADSCrossRefGoogle Scholar
  93. G. B. Bachelet, D. R. Hamann and M. Schlüter, Phys. Rev. B26, 4199(1982).ADSGoogle Scholar
  94. [88]
    W. M. C. Foulkes and M Schlüter, Phys. Rev. B42, 11505(1990).ADSGoogle Scholar
  95. [89]
    X. W. Wang, S. Fahy, and S. G. Louie, Phys. Rev. Lett. 65, 2414 (1990).ADSCrossRefGoogle Scholar
  96. [90]
    E. L. Shirley, L. Mitáš, and R. M. Martin, Phys. Rev. 44, 3395 (1991).ADSCrossRefGoogle Scholar
  97. [91]
    E. L. Shirley, thesis, University of Illinois, 1991; E. L. Shirley and R. M. Martin, Phys. Rev. 47, 15413 (1993).CrossRefGoogle Scholar
  98. [92]
    L. Mitáš, work in progress.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Richard M. Martin
    • 1
    • 2
  • Vincent D. Natoli
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations