Disordered Electronic Materials and Spin Glasses

  • D. J. W. Geldart

Abstract

The study of well ordered, chemically pure, crystalline solids in thermal equilibrium has occcupied a prominent position in traditional condensed matter physics. It is less well known that systematic studies of classes of poorly ordered, chemically impure, noncrystalline materials, often not in a state of thermal equilibrium, have also led to very important developments, particularly in the past decade or so. These developments have led to new fundamental insights into the physics of materials as well as to applications1–3. The primary purpose of this lecture is to provide a concise pedagogical introduction to a selection of properties of disordered systems, with particular emphasis on spin glasses. Numerical results for a number of spin glass models will be surveyed briefly. Some recent results for metallic spin glasses will be given and challenging areas for further work will be indicated.

Keywords

Spin Glass Spin Glass State Spin Glass Model Nonmagnetic Impurity Spin Glass Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A collection of short articles on “Disordered Solids” is given in: Physics Today 41 Dec. (1988).Google Scholar
  2. 2.
    A series of interesting lectures and reviews is given in: “Les Houches, Session XXXI, 1978-La matiere mal condensee/Ill-condensed matter,” R. Balian, R. Maynard, and G. Toulouse, eds., North Holland/World Scientific, Singapore (1983).Google Scholar
  3. 3.
    Various sample preparation and characterization methods are described by H. H. Liebermann in: “Amorphous Metallic Alloys”, F. E. Luborsky, ed., Butterworths, London (1983), p. 26.Google Scholar
  4. 4.
    M. Mezard, G. Parisi, M. A. Virasoro. “Spin Glass Theory and Beyond,” World Scientific, Singapore (1987).MATHGoogle Scholar
  5. 5.
    M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1960).ADSCrossRefGoogle Scholar
  6. 6.
    T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).ADSMATHCrossRefGoogle Scholar
  7. 7.
    K. Yosida, Phys. Rev. 106, 893 (1957).ADSCrossRefGoogle Scholar
  8. 8.
    A review of this picture is given by A. Blandin, J. Appl. Phys. 39, 1285 (1968).ADSCrossRefGoogle Scholar
  9. 9.
    B. Caroli, J. Phys. Chem. Solids 28, 1427 (1967).ADSCrossRefGoogle Scholar
  10. 10.
    B. Caroli and A. Blandin, J. Phys. Chem. Solids 27, 503 (1966).ADSCrossRefGoogle Scholar
  11. 11.
    D. J. W. Geldart, Physics Letters 38A, 25 (1972).ADSGoogle Scholar
  12. 12.
    P. Jena and D. J. W. Geldart, Phys. Rev. B 7, 439 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    G. Malmstrom, D. J. W. Geldart, and C. Blomberg, J. Phys. F 6, 233 (1976).ADSCrossRefGoogle Scholar
  14. 14.
    G. Malmstrom, D. J. W. Geldart, and C. Blomberg, J. Phys. F 6, 1953 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    D. C. Price, J. Phys. F 8, 933 (1978).ADSCrossRefGoogle Scholar
  16. 16.
    P. M. Levy and Q. Zhang, Phys. Rev. B 33, 665 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    A. Blandin and J. Friedel, J. Phys. Radium 20, 160 (1959).CrossRefGoogle Scholar
  18. 18.
    A. Blandin, J. Physique 39, C6–1499 (1978).Google Scholar
  19. 19.
    See reference 1 inthe experimental review by G. Williams, Can. J. Phys. 65, 1251 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    G. Toulouse, Comm. on Phys. 3, 115–119 (1977).Google Scholar
  21. 21.
    K. Binder and A. P. Young, Rev. Mod. Phys. 58 801 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    A. P. Young, J. D. Reger, and K. Binder, Spin glasses, orientational glasses and random field systems, in: “The Monte Carlo Method in Condensed Matter Physics,” K. Binder, ed., Springer-Verlag, Berlin, Heidelberg (1992).Google Scholar
  23. 23.
    K. H. Fischer and J. A. Hertz. “Spin Glasses,” Cambridge University Press, Cambridge (1991).CrossRefGoogle Scholar
  24. 24.
    L. P. Levy, Phys. Rev. B 38, 4963 (1988).ADSCrossRefGoogle Scholar
  25. 25.
    I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).ADSCrossRefGoogle Scholar
  26. 26.
    T. Moriya, Phys. Rev. Lett. 4, 5 (1960).ADSCrossRefGoogle Scholar
  27. 27.
    A. Fert and P. M. Levy, Phys. Rev. Lett. 44, 1538 (1980).ADSCrossRefGoogle Scholar
  28. 28.
    S. F. Edwards and P. W. Anderson, J. Phys. F 5, 89 (1975).Google Scholar
  29. 29.
    D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975).ADSCrossRefGoogle Scholar
  30. 30.
    A. T. Ogielski, Phys. Rev. B 32, 7384 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    A. T. Ogielski and I. Morgenstern, Phys. Rev. Lett. 54 928 (1985).ADSCrossRefGoogle Scholar
  32. 32.
    R. N. Bhatt and A. P. Young, Phys. Rev. Lett. 54 924 (1985).ADSCrossRefGoogle Scholar
  33. 33.
    R. N. Bhatt and A. P. Young, Phys. Rev. B 37, 5606 (1988).ADSCrossRefGoogle Scholar
  34. 34.
    K. Binder, Z. Phys. B 43 119 (1981).ADSCrossRefGoogle Scholar
  35. 35.
    B. W. Morris, S. G. Colborne, M. A. Moore, A. J. Bray, and J. Canisius, J. Phys. C 19.Google Scholar
  36. 36.
    M. P. Gingras, Phys. Rev. Lett. 71 1637 (1993).ADSCrossRefGoogle Scholar
  37. 37.
    B. Derrida, Physics Reports 184 207 (1989).MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    I. A. Campbell, Phys. Rev. Lett. 68 3351 (1992).ADSCrossRefGoogle Scholar
  39. 39.
    R. N. Bhatt and A. P. Young, Phys. Rev. Lett. 69 3130 (1992).ADSCrossRefGoogle Scholar
  40. 40.
    I. A. Campbell, Phys. Rev. Lett. 69 3131 (1992).ADSCrossRefGoogle Scholar
  41. 41.
    B. W. Morris and A. J. Bray, J. Phys. C 17 1717 (1984).ADSCrossRefGoogle Scholar
  42. 42.
    S. Jain and A. P. Young, J. Phys. C 19 3913 (1986).ADSCrossRefGoogle Scholar
  43. 43.
    J. A. Olive, A. P. Young and D. Sherrington, Phys. Rev. B 34 6341 (1986).ADSCrossRefGoogle Scholar
  44. 44.
    F. Matsubara, T. Iyota, and S. Inawashiro, Phys. Rev. Lett. 67, 1458 (1991).ADSCrossRefGoogle Scholar
  45. 45.
    A. Chakrabarti and C. Dasgupta, J. Phys. C 21 1613 (1985).ADSCrossRefGoogle Scholar
  46. 46.
    L. R. Walker and R. E. Waldstedt, Phys. Rev. Lett. 38 514 (1977).ADSCrossRefGoogle Scholar
  47. 47.
    L. R. Walker and R. E. Waldstedt, Phys. Rev. B 22 3816 (1980).ADSCrossRefGoogle Scholar
  48. 48.
    J. D. Reger and A. P. Young, Phys. Rev. B 37 5493 (1988).ADSCrossRefGoogle Scholar
  49. 49.
    F. Haake, M. Lewenstein, and M. Wilkens, Phys. Rev. Lett. 55 2606 (1985).ADSCrossRefGoogle Scholar
  50. 50.
    R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57 2607 (1986).MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    J.-S. Wang and R. H. Swendsen, Phys. Rev. B 37 7745 (1988).ADSCrossRefGoogle Scholar
  52. 52.
    J.-S. Wang and R. H. Swendsen, Phys. Rev. B 38 4840 (1988).ADSCrossRefGoogle Scholar
  53. 53.
    J.-S. Wang and R. H. Swendsen, Phys. Rev. B 38 9086 (1988).ADSCrossRefGoogle Scholar
  54. 54.
    A. J. Bray, M. A. Moore, and A. P. Young, Phys. Rev. Lett. 56, 2641 (1986).ADSCrossRefGoogle Scholar
  55. 55.
    D. C. Vier and S. Schultz, Phys. Rev. Lett. 54, 150 (1985).ADSCrossRefGoogle Scholar
  56. 56.
    P. G. de Gennes, J. Phys. Radium 23, 630 (1962).CrossRefGoogle Scholar
  57. 57.
    P. F. de Chatel, J. Magn. Magn. Mater. 23, 28 (1981).ADSCrossRefGoogle Scholar
  58. 58.
    A. Yu. Zyuzin and B. Z. Spivak, Pis’ma Zh. Eksp. Teor. Fiz. 43, 185 (1986);[JETP Lett. 43, 234 (1986)].Google Scholar
  59. 59.
    L. N. Bulaevskii and S. V. Panyukov, Pis’ma Zh. Eksp. Teor. Fiz. 43, 190 (1986); [JETP Lett. 43, 240 (1986)].Google Scholar
  60. 60.
    G. Bergmann, Phys. Rev. B 36, 2469 (1987).ADSCrossRefGoogle Scholar
  61. 61.
    M. J. Stephen and E. Abrahams, Sol. St. Comm. 11, 1423 (1988).CrossRefGoogle Scholar
  62. 62.
    A. Jagannathan, E. Abrahams, and M. Stephen, Phys. Rev. B 37, 436 (1988).ADSCrossRefGoogle Scholar
  63. 63.
    M. R. A. Shegelski and D. J. W. Geldart, Sol. St. Comm. 79, 769 (1991).ADSCrossRefGoogle Scholar
  64. 64.
    M. R. A. Shegelski and D. J. W. Geldart, Phys. Rev. B 46 2853 (1992).ADSCrossRefGoogle Scholar
  65. 65.
    M. R. A. Shegelski and D. J. W. Geldart, Phys. Rev. B 46 5318 (1992).ADSCrossRefGoogle Scholar
  66. 66.
    A. Fert, N. de Courtenay and H. Bouchiat, J. Phys. France 49, 1173–1178 (1988).CrossRefGoogle Scholar
  67. 67.
    S. A. Werner, Comments Cond. Mat. Phys. 15 55 (1990).Google Scholar
  68. 68.
    M. B. Weissman, N. E. Israeloff and G. B. Alers, J. Magn. Magn. Mater. 114 87 (1992).ADSCrossRefGoogle Scholar
  69. 69.
    M. B. Weissman, Rev. Mod. Phys. 65 829 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. J. W. Geldart
    • 1
  1. 1.Department of PhysicsDalhousie UniversityHalifaxCanada

Personalised recommendations