Skip to main content
  • 224 Accesses

Abstract

The study of well ordered, chemically pure, crystalline solids in thermal equilibrium has occcupied a prominent position in traditional condensed matter physics. It is less well known that systematic studies of classes of poorly ordered, chemically impure, noncrystalline materials, often not in a state of thermal equilibrium, have also led to very important developments, particularly in the past decade or so. These developments have led to new fundamental insights into the physics of materials as well as to applications1–3. The primary purpose of this lecture is to provide a concise pedagogical introduction to a selection of properties of disordered systems, with particular emphasis on spin glasses. Numerical results for a number of spin glass models will be surveyed briefly. Some recent results for metallic spin glasses will be given and challenging areas for further work will be indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A collection of short articles on “Disordered Solids” is given in: Physics Today 41 Dec. (1988).

    Google Scholar 

  2. A series of interesting lectures and reviews is given in: “Les Houches, Session XXXI, 1978-La matiere mal condensee/Ill-condensed matter,” R. Balian, R. Maynard, and G. Toulouse, eds., North Holland/World Scientific, Singapore (1983).

    Google Scholar 

  3. Various sample preparation and characterization methods are described by H. H. Liebermann in: “Amorphous Metallic Alloys”, F. E. Luborsky, ed., Butterworths, London (1983), p. 26.

    Google Scholar 

  4. M. Mezard, G. Parisi, M. A. Virasoro. “Spin Glass Theory and Beyond,” World Scientific, Singapore (1987).

    MATH  Google Scholar 

  5. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1960).

    Article  ADS  Google Scholar 

  6. T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).

    Article  ADS  MATH  Google Scholar 

  7. K. Yosida, Phys. Rev. 106, 893 (1957).

    Article  ADS  Google Scholar 

  8. A review of this picture is given by A. Blandin, J. Appl. Phys. 39, 1285 (1968).

    Article  ADS  Google Scholar 

  9. B. Caroli, J. Phys. Chem. Solids 28, 1427 (1967).

    Article  ADS  Google Scholar 

  10. B. Caroli and A. Blandin, J. Phys. Chem. Solids 27, 503 (1966).

    Article  ADS  Google Scholar 

  11. D. J. W. Geldart, Physics Letters 38A, 25 (1972).

    ADS  Google Scholar 

  12. P. Jena and D. J. W. Geldart, Phys. Rev. B 7, 439 (1973).

    Article  ADS  Google Scholar 

  13. G. Malmstrom, D. J. W. Geldart, and C. Blomberg, J. Phys. F 6, 233 (1976).

    Article  ADS  Google Scholar 

  14. G. Malmstrom, D. J. W. Geldart, and C. Blomberg, J. Phys. F 6, 1953 (1976).

    Article  ADS  Google Scholar 

  15. D. C. Price, J. Phys. F 8, 933 (1978).

    Article  ADS  Google Scholar 

  16. P. M. Levy and Q. Zhang, Phys. Rev. B 33, 665 (1986).

    Article  ADS  Google Scholar 

  17. A. Blandin and J. Friedel, J. Phys. Radium 20, 160 (1959).

    Article  Google Scholar 

  18. A. Blandin, J. Physique 39, C6–1499 (1978).

    Google Scholar 

  19. See reference 1 inthe experimental review by G. Williams, Can. J. Phys. 65, 1251 (1987).

    Article  ADS  Google Scholar 

  20. G. Toulouse, Comm. on Phys. 3, 115–119 (1977).

    Google Scholar 

  21. K. Binder and A. P. Young, Rev. Mod. Phys. 58 801 (1986).

    Article  ADS  Google Scholar 

  22. A. P. Young, J. D. Reger, and K. Binder, Spin glasses, orientational glasses and random field systems, in: “The Monte Carlo Method in Condensed Matter Physics,” K. Binder, ed., Springer-Verlag, Berlin, Heidelberg (1992).

    Google Scholar 

  23. K. H. Fischer and J. A. Hertz. “Spin Glasses,” Cambridge University Press, Cambridge (1991).

    Book  Google Scholar 

  24. L. P. Levy, Phys. Rev. B 38, 4963 (1988).

    Article  ADS  Google Scholar 

  25. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).

    Article  ADS  Google Scholar 

  26. T. Moriya, Phys. Rev. Lett. 4, 5 (1960).

    Article  ADS  Google Scholar 

  27. A. Fert and P. M. Levy, Phys. Rev. Lett. 44, 1538 (1980).

    Article  ADS  Google Scholar 

  28. S. F. Edwards and P. W. Anderson, J. Phys. F 5, 89 (1975).

    Google Scholar 

  29. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975).

    Article  ADS  Google Scholar 

  30. A. T. Ogielski, Phys. Rev. B 32, 7384 (1985).

    Article  ADS  Google Scholar 

  31. A. T. Ogielski and I. Morgenstern, Phys. Rev. Lett. 54 928 (1985).

    Article  ADS  Google Scholar 

  32. R. N. Bhatt and A. P. Young, Phys. Rev. Lett. 54 924 (1985).

    Article  ADS  Google Scholar 

  33. R. N. Bhatt and A. P. Young, Phys. Rev. B 37, 5606 (1988).

    Article  ADS  Google Scholar 

  34. K. Binder, Z. Phys. B 43 119 (1981).

    Article  ADS  Google Scholar 

  35. B. W. Morris, S. G. Colborne, M. A. Moore, A. J. Bray, and J. Canisius, J. Phys. C 19.

    Google Scholar 

  36. M. P. Gingras, Phys. Rev. Lett. 71 1637 (1993).

    Article  ADS  Google Scholar 

  37. B. Derrida, Physics Reports 184 207 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  38. I. A. Campbell, Phys. Rev. Lett. 68 3351 (1992).

    Article  ADS  Google Scholar 

  39. R. N. Bhatt and A. P. Young, Phys. Rev. Lett. 69 3130 (1992).

    Article  ADS  Google Scholar 

  40. I. A. Campbell, Phys. Rev. Lett. 69 3131 (1992).

    Article  ADS  Google Scholar 

  41. B. W. Morris and A. J. Bray, J. Phys. C 17 1717 (1984).

    Article  ADS  Google Scholar 

  42. S. Jain and A. P. Young, J. Phys. C 19 3913 (1986).

    Article  ADS  Google Scholar 

  43. J. A. Olive, A. P. Young and D. Sherrington, Phys. Rev. B 34 6341 (1986).

    Article  ADS  Google Scholar 

  44. F. Matsubara, T. Iyota, and S. Inawashiro, Phys. Rev. Lett. 67, 1458 (1991).

    Article  ADS  Google Scholar 

  45. A. Chakrabarti and C. Dasgupta, J. Phys. C 21 1613 (1985).

    Article  ADS  Google Scholar 

  46. L. R. Walker and R. E. Waldstedt, Phys. Rev. Lett. 38 514 (1977).

    Article  ADS  Google Scholar 

  47. L. R. Walker and R. E. Waldstedt, Phys. Rev. B 22 3816 (1980).

    Article  ADS  Google Scholar 

  48. J. D. Reger and A. P. Young, Phys. Rev. B 37 5493 (1988).

    Article  ADS  Google Scholar 

  49. F. Haake, M. Lewenstein, and M. Wilkens, Phys. Rev. Lett. 55 2606 (1985).

    Article  ADS  Google Scholar 

  50. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57 2607 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  51. J.-S. Wang and R. H. Swendsen, Phys. Rev. B 37 7745 (1988).

    Article  ADS  Google Scholar 

  52. J.-S. Wang and R. H. Swendsen, Phys. Rev. B 38 4840 (1988).

    Article  ADS  Google Scholar 

  53. J.-S. Wang and R. H. Swendsen, Phys. Rev. B 38 9086 (1988).

    Article  ADS  Google Scholar 

  54. A. J. Bray, M. A. Moore, and A. P. Young, Phys. Rev. Lett. 56, 2641 (1986).

    Article  ADS  Google Scholar 

  55. D. C. Vier and S. Schultz, Phys. Rev. Lett. 54, 150 (1985).

    Article  ADS  Google Scholar 

  56. P. G. de Gennes, J. Phys. Radium 23, 630 (1962).

    Article  Google Scholar 

  57. P. F. de Chatel, J. Magn. Magn. Mater. 23, 28 (1981).

    Article  ADS  Google Scholar 

  58. A. Yu. Zyuzin and B. Z. Spivak, Pis’ma Zh. Eksp. Teor. Fiz. 43, 185 (1986);[JETP Lett. 43, 234 (1986)].

    Google Scholar 

  59. L. N. Bulaevskii and S. V. Panyukov, Pis’ma Zh. Eksp. Teor. Fiz. 43, 190 (1986); [JETP Lett. 43, 240 (1986)].

    Google Scholar 

  60. G. Bergmann, Phys. Rev. B 36, 2469 (1987).

    Article  ADS  Google Scholar 

  61. M. J. Stephen and E. Abrahams, Sol. St. Comm. 11, 1423 (1988).

    Article  Google Scholar 

  62. A. Jagannathan, E. Abrahams, and M. Stephen, Phys. Rev. B 37, 436 (1988).

    Article  ADS  Google Scholar 

  63. M. R. A. Shegelski and D. J. W. Geldart, Sol. St. Comm. 79, 769 (1991).

    Article  ADS  Google Scholar 

  64. M. R. A. Shegelski and D. J. W. Geldart, Phys. Rev. B 46 2853 (1992).

    Article  ADS  Google Scholar 

  65. M. R. A. Shegelski and D. J. W. Geldart, Phys. Rev. B 46 5318 (1992).

    Article  ADS  Google Scholar 

  66. A. Fert, N. de Courtenay and H. Bouchiat, J. Phys. France 49, 1173–1178 (1988).

    Article  Google Scholar 

  67. S. A. Werner, Comments Cond. Mat. Phys. 15 55 (1990).

    Google Scholar 

  68. M. B. Weissman, N. E. Israeloff and G. B. Alers, J. Magn. Magn. Mater. 114 87 (1992).

    Article  ADS  Google Scholar 

  69. M. B. Weissman, Rev. Mod. Phys. 65 829 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geldart, D.J.W. (1995). Disordered Electronic Materials and Spin Glasses. In: Neilson, D., Das, M.P. (eds) Computational Approaches to Novel Condensed Matter Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9791-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9791-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9793-0

  • Online ISBN: 978-1-4757-9791-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics