Track Structure, Chromosome Geometry and Chromosome Aberrations

  • David J. Brenner
  • John F. Ward
  • Rainer K. Sachs
Part of the Basic Life Sciences book series (BLSC, volume 63)


The joint role of radiation track structure and chromosome geometry in determining yields of chromosome aberrations is discussed. Ideally, the geometric models of chromosomes used for analyzing aberration yields should have the same degree of realism as track structure models. However, observed chromosome aberrations are produced by processes on comparatively large scales, e.g., misrepair involving two DSB located on different chromosomes or two DSB separated by millions of base pairs on one chromosome, and quantitative models for chromatin on such large scales have to date almost never been attempted. We survey some recent data on large-scale chromosome geometry, mainly results obtained with fluorescence in situ hybridization (“chromosome painting”) techniques. Using two chromosome models suggested by the data, we interpret the relative yields, at low and high LET, of inter-chromosomal aberrations compared to intra-chromosomal, inter-arm aberrations. The models consider each chromosome confined within its own “chromosome localization sphere,” either as a random cloud of points in one model or as a confined Gaussian polymer in the other. In agreement with other approaches, our results indicate that at any given time during the G 0/G l part of the cell cycle a chromosome is largely confined to a sub-volume comprising less than 10% of the volume of the cell nucleus. The possible significance of the ratio of inter-chromosomal aberrations to intra-chromosomal, inter-arm aberrations as an indicator of previous exposure to high LET radiation is outlined.


Autocorrelation Function Chromosomal Aberration Double Strand Break Ionization Cluster Chromosome Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.T. Goodhead. Relationship of microdosimetric techniques to applications in biological systems. Int. J. Radiat. Biol. 56: 623–634 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    R.B. Painter. The role of DNA damage and repair in cell killing induced by ionizing radiation. In Radiation Biology in Cancer Research, R.E. Meyn and H.R. Withers eds., pp. 59–68. Raven Press, New York (1979).Google Scholar
  3. 3.
    M. Sorsa, J. Wilbourn and H. Vainio. Human cytogenetic damage as a predictor of cancer risk. larc Scientific Publications 116: 543–54 (1992).Google Scholar
  4. 4.
    D.C. Lloyd and A.A. Edwards. Chromosome aberrations in human lymphocytes: effects of radiation quality, dose, and dose rate. In Radiation-Induced Chromosome Damage in Man, T. Ishihara and M.S. Sasaki, eds., pp. 23–29. Alan R Liss, New York (1983).Google Scholar
  5. 5.
    D.J. Brenner, and J.F. Ward. Constraints on energy deposition and target size of multiply-damaged sites associated with DNA double strand breaks. Int. J. Radiat. Biol. 61: 737–748 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    A.M. Kellerer. Fundamentals of microdosimetry. In The Dosimetry of Ionizing Radiation, K. Kase, B. Bjarngard and F. Attix, eds., pp. 78–162. Academic Press, Orlando (1985).Google Scholar
  7. 7.
    D.J. Brenner and R.K. Sachs. Chromosomal “fingerprints” of prior exposure to densely-ionizing radiation. Rad. Res. 140: 134–142.Google Scholar
  8. 8.
    P. Lichter, T. Cremer, J. Borden, L. Manuelidis, and D.C. Ward. Delineation of individual human chromosome aberrations in metaphase and interphase tumor cells by in situ suppression hybridization using chromosome-specific library probes. Human Genetics 80: R224–34 (1988).CrossRefGoogle Scholar
  9. 9.
    H. Van Dekken, D. Pinkel, J. Mulliken, B. Trask, G. Van den Engh, and J. Gray. Three-dimensional analysis of the organization of human chromosome domains in human and hamster hybrid cells. J. Cell Sci. 94: 299–306 (1989).PubMedGoogle Scholar
  10. 10.
    J.N. Lucas, T. Tenjin, T. Straume, D. Pinkel, D. Moore, 2d., M. Litt, and J.W. Gray. Rapid human chromosome aberration analysis using fluorescence in situ hybridization. Int. J. Radiat. Biol. 56: 35–44, 56: 201 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Cremer, S. Popp, P. Emmerich, P. Lichter P and C. Cremer, Rapid metaphase and interphase detection of radiation-induced chromosome aberrations in human lymphocytes by chromosomal suppression in situ hybridization. Cytometry 11: 110–8 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    J.W. Evans, J.A. Chang, A.J. Giaccia, D. Pinkel, and J.M. Brown. The use of fluorescence in situ hybridisation combined with premature chromosome condensation for the identification of chromosome damage. British Journal of Cancer 63: 517–21 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    B.J. Trask, H. Massa, S. Kenwrick and J. Gitschier. Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. American Journal of Human Genetics 48: 1–15 (1991).PubMedGoogle Scholar
  14. 14.
    J.N. Lucas, A. Awa, T. Straume, M. Poggensee, Y. Kodama, M. Nakano, K. Ohtaki, H.-U. Weir, D. Pinkel, J.W. Gray and G. Littlefield, Rapid translocation frequency analysis in humans decades after exposure to ionizing radiation. Int. J. Radiat. Biol. 62: 53–63 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    J.M. Brown and J.W. Evans. Fluorescence in situ hybridization: an improved method of quantitating chromosome damage and repair. Brit. J. Rad. Supplement 24: 61–4 (1992).Google Scholar
  16. 16.
    J.N. Lucas and R.K. Sachs. Using 3-colour chromosome painting to decide between chromosome aberration models. Proc. Nat Acad. Sci. U.S. 90: 1484–1487 (1993).CrossRefGoogle Scholar
  17. 17.
    G. van den Engh, R. Sachs and B. Trask. Estimating genomic distance from DNA sequence location in cell nuclei using a random walk model, Science 257: 1410–1412 (1992).PubMedCrossRefGoogle Scholar
  18. 18.
    J.F. Ward, G.D.D. Jones and J.R. Milligan. biological consequences of non-homogeneous energy deposition by ionizing radiation. Radiation Protection Dosimetry 52: 271–276. (1994).Google Scholar
  19. 19.
    K.E. Van Holde. Chromatin. Springer Verlag, NY (1989).Google Scholar
  20. 20.
    A. Wolffe. Chromatin: Structure and Function. Academic Press, San Diego (1992).Google Scholar
  21. 21.
    A. Chatterjee and W. R. Holley. Early Chemical Events and Initial DNA Damage. In Physical and Chemical Mechanisms in Molecular Radiation Biology, W.A. Glass and M.N. Vanna, eds., pp. 257–285. Plenum Press, NY (1992).Google Scholar
  22. 22.
    J.R.K. Savage, and D.G. Papworth. The relationship of radiation-induced yield to chromosome arm number. Mutat. Res. 19: 139–143 (1973).PubMedCrossRefGoogle Scholar
  23. 23.
    D.J. Brenner. On the probability of interaction between elementary radiation-induced chromosomal injuries. Radiat. Environ. Biophys. 27: 189–199 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    P. Hahnfeldt, J.E. Hearst, D.J. Brenner, R.K. Sachs and L.R. Hlatky. Polymer models for interphase chromosomes. Proc. Nat. Acad. Sci. USA 90: 7854–7858 (1993).PubMedCrossRefGoogle Scholar
  25. 25.
    L. Hlatky L, R.K. Sachs, and P. Hahnfeldt. The ratio of dicentrics to centric rings produced in human lymphocytes by acute low-LET radiation. Radiat. Res. 129: 304–308 (1992).Google Scholar
  26. 26.
    L.G. Littlefield. Application of fluorescence in situ hybridization techniques in radiation cytogenetics. Radiation Research Meeting #41:126 (Dallas 1993 ).Google Scholar
  27. 27.
    K. Sax. An analysis of X-ray induced chromosomal aberrations in Tradescantia. Genetics 25: 41–68 (1940).PubMedGoogle Scholar
  28. 28.
    D.E. Lea. Actions of radiations on living cells. Cambridge University Press, Cambridge [Eng.] (1955).Google Scholar
  29. 29.
    L. Manuelidis. A view of interphase chromosomes. Science 250: 1533–4 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    T. Haaf and M. Schmid, Chromosome topology in mammalian interphase nuclei. Experimental Cell Research 192: 325–332 (1991).PubMedCrossRefGoogle Scholar
  31. 31.
    M. Fergusson and D.C. Ward. Cell cycle dependent chromosomal movement in pre-mitotic human T-lymphocyte nuclei. Chromosoma 101: 557–565 (1992).CrossRefGoogle Scholar
  32. 32.
    J.R.K. Savage. Mechanisms of chromosome aberrations. In Mutation and the Environment, Progress in Clinical and Biological Research 340B, M. Mendelsohn and R.J. Albertini, eds., pp. 385–396. Wiley-Liss, NY (1990).Google Scholar
  33. 33.
    M.A. Bender, and P.C. Gooch. Persistent chromosome aberrations in irradiated human subjects. II. Three and one-half year investigation. Radiat. Res. 18: 389–396 (1963).PubMedCrossRefGoogle Scholar
  34. 34.
    S. Sasaki, T. Takatsuji, Y. Ejima, S. Kodama, and C. Kido. Chromosome aberration frequency and radiation dose to lymphocytes by alpha-particles from internal deposit of Thorotrast. Radiat. Environ. Biophys. 26: 227–238 (1987).PubMedCrossRefGoogle Scholar
  35. 35.
    E.J. Tawn, J.W. Hall, and G.B. Schofield. Chromosome studies in plutonium workers. Int. J. Radiat. Biol. 47: 599–610. (1985).CrossRefGoogle Scholar
  36. 36.
    J. Pohl-Ruling, P. Fisher, D.C. Lloyd, A.A. Edwards, A.T. Natarajan, G. Obe, K.E. Buckton, N.O. Bianchi, P.P.W. Buul, B.C. Das, F. Dashil, L. Fabry, M. Kucerova, A. Leonard, R.N. Mukherjee, U. Mukherjee, R. Nowotny, P. Palitti, Z. Polivkova, T. Sharma, and W. Schmidt. Chromosomal damage induced in human lymphocytes by low doses of D-T neutrons. Mutat. Res. 173: 267–272 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    J.S. Prosser, A.A. Edwards and D.C. Lloyd. The relationship between colony forming ability and chromosomal aberrations induced in human T-lymphocytes after y-irradiation. Int. J. Radiat. Biol. 58: 293–301 (1990).PubMedCrossRefGoogle Scholar
  38. 38.
    M. Doi and S.F. Edwards. The Theory of Polymer Dynamics. Oxford Press, Oxford (1988).Google Scholar
  39. 39.
    R.K. Sachs, A. Awa, Y. Kodama, M. Nakano, K. Ohtaki, and J.N. Lucas. Ratios of radiation-produced chromosome aberrations as indicators of large-scale DNA geometry during interphase. Radiation Research 133: 345–350 (1993).PubMedCrossRefGoogle Scholar
  40. 40.
    B. Trask, D. Pinkel, and G. van den Engh. The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics 5: 710–17 (1991).CrossRefGoogle Scholar
  41. 41.
    M.G. Kendall and P.A.P Moran. Geometrical Probability, pp. 53–54. Charles Griffin Co., London (1963).Google Scholar
  42. 42.
    P.M. Morse and H. Feshbach. Methods of Theoretical Physics. McGraw-Hill, New York ) (1953).Google Scholar
  43. 43.
    D.J. Brenner. Track structure, lesion development, and cell survival. Rad. Res. 124: S29 - S37 (1990).CrossRefGoogle Scholar
  44. 44.
    S.B. Curtis. Mechanistic Models. In Physical and Chemical Mechanisms in Molecular Radiation Biology, W.A. Glass and M.N. Vanna, eds., pp. 367–386. Plenum Press, NY (1992).Google Scholar
  45. 45.
    R. Sachs, P-L. Chen, P. Hahnfeldt, and L. Hlatky, DNA damage caused by ionizing radiation. Mathematical Biosciences 112: 271–303 (1993).CrossRefGoogle Scholar
  46. 46.
    N. Madras and A. Sokal. The pivot algorithm: a highly efficient Monte Carlo method for self avoiding walks. J. Stat. Phys. 50: 107–186 (1988).CrossRefGoogle Scholar
  47. 47.
    M. Hoshi, K. Yokoru, S. Sawada, K. Shizuma, K. Iwatani, H. Hasai, T. Oka, H. Morishima, and D.J. Brenner. Europium-152 activity induced by Hiroshima atomic-bomb neutrons. Comparison with the 32P, 60Co and 152Eu activities in Dosimetry System 1986 (DS86). Hlth. Phys. 57: 831–837 (1989).Google Scholar
  48. 48.
    T. Straume, S.D. Egbert, W.A. Woolson, R.C. Finkel, P.W. Kubik, H.E. Gove, P. Sharma, and M. Hoshi. Neutron discrepancies in the new (DS86) Hiroshima dosimetry. Hlth. Phys. 63: 421–426 (1992).CrossRefGoogle Scholar
  49. 49.
    W.C. Roesch, (ed.), US-Japan Joint Reassessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki. Radiation Effects Research Foundation, Hiroshima (1987).Google Scholar
  50. 50.
    A.A. Awa, and J.V. Neel. Cytogenetic ‘rogué cells, what is their frequency, origin and evolutionary significance? Proc Nat. Acad. Sci. USA, 83: 1021–1025 (1986).PubMedCrossRefGoogle Scholar
  51. 51.
    J.V. Neel, A.A. Awa, Y. Kodama, M. Nakono, and K. Mabuchi. ‘Rogue lymphocytes among Ukrainians not exposed to radioactive fallout from the Chernobyl accident, the possible role of this phenomenon in oncogenesis, teratogenesis, and mutagenesis. Proc. Nat. Acad. Sci. USA 89: 6973–6977 (1992).PubMedCrossRefGoogle Scholar
  52. 52.
    A.V. Sevan’kaev, A.F., Tsyb, D.C. Lloyd, A.A. Zhloba, V.V. Moiseenko, A.M. Skrjabin, and V.M. Climov. ‘Rogue cells observed in children exposed to radiation from the Chernobyl accident. Int. J. Radiat. Biol. 63: 361–367 (1993).PubMedCrossRefGoogle Scholar
  53. 53.
    A.E. Romanenko. Medical consequences of the accident at the Chernobyl nuclear power station. Medical Science Academy of the USSR, Kiev (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • David J. Brenner
    • 1
  • John F. Ward
    • 2
  • Rainer K. Sachs
    • 3
  1. 1.Center for Radiological ResearchColumbia UniversityNew YorkUSA
  2. 2.Department of RadiologyUniversity of California at San DiegoLa JollaUSA
  3. 3.Department of Physics and Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations