Skip to main content

Three Statistical Technologies with High Potential in Biological Imaging and Modeling

  • Chapter
Book cover Computational Approaches in Molecular Radiation Biology

Part of the book series: Basic Life Sciences ((BLSC,volume 63))

  • 102 Accesses

Abstract

The three technologies that are surveyed here are (1) wavelet approximations, (2) hidden Markov models, and (3) the Markov chain Renaissance. The intention of the article is to provide an introduction to the benefits these technologies offer and to explain as far as possible the sources of their effectiveness. We also hope to suggest some useful relationships between these technologies and issues of importance on the agenda of biological and medical research.

Research partially supported by NSF DMS92-11634

Research partially supported by ARO Grant DAAL03-91-G-0110 and NSF DMS92-11634

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chui, C.K. (1992a), An Introduction to Wavelets. Academic Press, New York.

    Google Scholar 

  • Chui, C.K. (1992b), ed., Wavelets: A Tutorial in Theory and Applications. Academic Press, New York.

    Google Scholar 

  • Coifman, R.R. and Meyer, Y. (1991), “Remarques sur l’analyse de Fourier â fenêtre,” C.R. Acad. Sci. Paris Sér. I, 259–261.

    Google Scholar 

  • Daubechies, I. (1988), “Orthonormal bases of compactly supported wavelets,” Comm. Pure Appl. Math., 41, 909–996.

    Article  Google Scholar 

  • Daubechies, I., (1992) Ten Lectures on Wavelets, SIAM Publications, Philadelphia PA.

    Google Scholar 

  • Duffin, R.J. and Schaeffer, A.C. (1952), “A class of nonharmonic Fourier series,” Trans. Amer. Math. Soc., 72, 341–366.

    Article  Google Scholar 

  • Gröchenig, G.K. (1991), “Describing functions: atomic decompositions versus frames,” Monatsh. Math., 112, 1–42.

    Article  Google Scholar 

  • Gröchenig, K. and Madych, W.R. (1992), “Multiresolution analysis, Haar bases and self-similar filings of V,” IEEE Trans. Inform. Theory, 38, 556–568.

    Article  Google Scholar 

  • Kovaevie, J. and Vetterli, M. (1991), “Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Nn, ” IEEE Trans. Inform. Theory, 38, 533–535.

    Google Scholar 

  • Mallat, S. (1989), “Multiresolution approximation and wavelets,” Trans. Amer. Math. Soc., 315, 69–88.

    Google Scholar 

  • Meyer, Y. (1990), Ondelettes ét opéateurs, I: Ondelettes, II: Opéatcurs dc CalderónZygrnund, III: Opéatcurs multilinéaires. Hermann, Paris.

    Google Scholar 

  • Meyer, Y. (1993), Wavelets: Algorithms and Applications. SIAM Publications, Philadelphia, PA.

    Google Scholar 

  • Strang, G. (1993), “ Wavelet Transforms versus Fourier Transforms”, Bulletin of the American Mathematical Society 28,2, 288–305.

    Google Scholar 

  • Ruskai, M.B., 13eylkin, G., Coffman, R.R., Daubechies, 1., Mallat, S. Meyer, Y. and Raphael, L. (1992), eds., Wavelets and their Applications. Jones and Bartlett, Boston.

    Google Scholar 

HMM

  • Aggoun, L. and Elliot, R.J. (1992), “Finite dimensional predictors for bidders Markov chains,” System Control Lett., 19, 335–340.

    Article  Google Scholar 

  • Baum, L.E. and Eagon, J.A. (1967). An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model of Ecology,” Bull. Arner. Math. Soc., 73, 360–363.

    Google Scholar 

  • Baum, L.E. and Petrie, T. (1966), “Statistical inference for probabilistic functions of finite state Markov chains,” Ann. Math. Statist., 37, 1554–1563.

    Article  Google Scholar 

  • Baum, L.E., Petrie, ’l’., Smiles, G. and Weiss, N. (1970), “A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains,” Ann. Math. Statist., 41. I61–171.

    Article  Google Scholar 

  • Bickel, P.J. and Ritov, Y. (1993), “Inference in hidden Markov models 1 Local asymptotic normality in the stationary case,” Technical Report, Department of Statistics, University of California, Berkeley.

    Google Scholar 

  • Blackwell, D. and Koopmans, L. (1957), “On the identifiability problem for functions of finite Markov chains,” Ann. Math. Statist., 28, 1011–1015.

    Article  Google Scholar 

  • Chung, S.H., Moore, J.B., Xia, L., Premkumar, L.S. and Gages, P.W. (1990), “Characterization of single channel currents using digital signal processing techniques based on hidden Markov models,” Phil. Trans. Roy. Soc. Land. Ser. B, 329, 265–285.

    Article  CAS  Google Scholar 

  • Churchill, G.A. (1989), “Stochastic models for heterogeneous DNA sequences,” Bull. Math. Biol., 51, 79–94.

    PubMed  CAS  Google Scholar 

  • Coast, l).A., Cano, G.G. and Briller, S.A. (1991), “Use of hidden Markov models for Electrocardiographic signal analysis,” J. of Electrocardiology, 23, 184–191.

    Google Scholar 

  • Forney, G.D. (1973), “The Viterbi algorithm,” Proc. IEEE, 61, 268–278.

    Article  Google Scholar 

  • Fredkin, D.R. and Rice, J.A. (1992), “Bayesian restoration of single channel patch clamp recordings,” Biometrics,48, 427–448.

    Google Scholar 

  • Fridman, M. (1993), “Hidden Markov model regression,” Unpublished Thesis, University of Pennsylvania.

    Google Scholar 

  • Gilbert, E.J. (1959), “On the identifiability problem for functions of finite Markov chains,” Ann. Math. Statist.,30, 688–697.

    Google Scholar 

  • Guttorp, P., Newton, M.A. and Abkowitz, J.L. (1990), “A stochastic model for haematopoiesi in cats,” IMA J. Math. Appl. Med. Biol.,7, 125–143.

    Google Scholar 

  • Juang, B.H. (1985), “Maximum Likelihood estimation for mixture multivariate stochastic observations of Markov chains,” AT T Tech. J.,64, 1235–1249.

    Google Scholar 

  • Juang, B.H., Levinson, S.E. and Sondhi, M.M. (1986), “Maximum likelihood estimation for multivariate mixture observations of Markov chains,” IEEE Trans. Inform. Theory, IT-32, 307–309.

    Google Scholar 

  • Juang, B.H. and Rabiner, L.R. (1990), “The Segmental K-Means algorithm for estimating parameters of hidden Markov models,” IEEE Trans. Acoust., Speech, Signal Process, ASSP-38, 1639–1641.

    Google Scholar 

  • Juang, B.H. and Rabiner, L.R. (1991), “Hidden Markov models for speech recognition,” Technometrics, 33, 251–272.

    Article  Google Scholar 

  • Khasminskii, R.Z., Lazareva, B.V. and Stapleton, J. (1993), “Some procedures for state estimation of a hidden Markov chain with two states,” Technical Report, Department of Statistics and Probability, Michigan State University.

    Google Scholar 

  • Kogan, J.A. (1991), “Optional reconstruction of Markov sequences through indirect observations,” 6th USSR-Japan Symp. on Probab. and Math. Statist., Kiev.

    Google Scholar 

  • Kullback, S. and Leibler, R.A. (1951), “On information and sufficiency,” Ann. Math. Statist., 22, 79–86.

    Article  Google Scholar 

  • Leroux, B.G. (1992), “Maximum-likelihood estimation for hidden Markov models,” Stochastic Process. Appl., 40, 127–143.

    Article  Google Scholar 

  • Levinson, S.E. (1986), “Continuously variable duration hidden Markov models for automatic speech recognition,” Computer, Speech and Language, 1, 29–45.

    Article  Google Scholar 

  • Liporace, L.A. (1982), “Maximum Likelihood estimation for multivariate observations of Markov sources,” IEEE Trans. Inform. Theory,IT-28, 729–734.

    Google Scholar 

  • Paul, D.B. (1985), “Training of HMM recognizers by simulated annealing,” Proc. ICASSP, New York: IEEE, 13–16.

    Google Scholar 

  • Petrie, T. (1969), “Probabilistic functions of finite state Markov chains,” Ann. Math. Statist.,40, 97–115.

    Google Scholar 

  • Quandt, R.E. (1972), “A new approach to estimating switching regressions,” J. Amer. Statist. Assoc., 67, 306–310.

    Article  Google Scholar 

  • Quandt, R.E. and Ramsey, J.B. (1978), “Estimating mixtures of Normal distributions and switching regressions,” J. Amer. Statist. Assoc., 73, 730–738.

    Article  Google Scholar 

  • Rabiner, L.R. (1989), “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, 77, 257–285.

    Article  Google Scholar 

  • Viterbi, A.D. (1967), “Error bounds for convolutional codes and an asymptotically optimal decoding algorithm,” IEEE Trans. Inform.. Theory, IT-13, 260–269.

    Google Scholar 

Markov Renaissance

  • Albert, 3.H. and Chib, S. (1993), “Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts,” J. Bus. h’ Econ. Statist., 11, 1–16.

    Google Scholar 

  • Besag, J. (1974), “Spatial interaction and the statistical analysis of lattice systems (with discussion),” J. Roy. Statist. Soc. Ser. 13, 36, 192–236.

    Google Scholar 

  • Besag, J. and Green, P.J. (1993), “Spatial statistics and Bayesian computations,” J. Roy. Statist. Soc. Ser. B, 55, 25–37.

    Google Scholar 

  • Cerny, V. (1985), “A thermodynamic approach to the traveling salesman problem: An efficient simulation”, J. Optirn.. Theory Appl.. 45, 41–51.

    Google Scholar 

  • Gelfand, A.E. and Smith, A.F.M. (1990), “Sampling-based approaches to calculating marginal densities,” J. Amer. Statist. Assoc., 85, 398–409.

    Article  Google Scholar 

  • Geman, S. and Geman, D. (1984), “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattn Anal. Mae’i. Intcll., 6, 72 1741

    Google Scholar 

  • Geyer, C.J. (1991), “Markov chain Monte Carlo maximum likelihood,” Computer Science and Statistics: Proc. 2.3rd Swap. Interface, Fairfax Station: Interface Foundation, 156–163.

    Google Scholar 

  • Gilks, W.R., Clayton, D.G., Spiegelhalter, D.J., Best, N.G., McNeil, A.J., Sharpies, L.D. and Kirby, A.J. (1993), “Modelling complexity: Applications of Gibbs sampling in medicine,” J. Roy. Statist. Soc. Ser. B, 55, 39–52.

    Google Scholar 

  • Johnson, D.S., Aragon, C., McGeoch, L. and Schevon, C. (1990), “Optimization by simulated annealing: An experimental evaluation, Part I: Graph partitioning,” Oper. Res., 37, 865–892.

    Article  Google Scholar 

  • Johnson, D.S., Aragon, C., McGeoch, L. and Schevon, C. (1991), “Optimization by simulated annealing: An experimental evaluation, Part II: Graph coloring and number partitioning,” Oper. Res., 39, 378–406.

    Article  Google Scholar 

  • Johnson, D.S., Aragon, C., McGeoch, L. and Schevon, C. (1992), “Optimization by simulated annealing: An experimental evaluation, Part III: The traveling salesman problem,” in preparation.

    Google Scholar 

  • IIajek, B. (1988), “Cooling schedules for optimal annealing,” Math. Oper. Res., 13, 311–329.

    Article  Google Scholar 

  • Hastings, W.K. (1970), “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika, 57, 97–109.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelett, C.D. and Vecchi, M.P (1983), “Optimization by simulated annealing,” Science, 220, 621–630.

    Article  Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953), “Equation of state calculation by fast computing machines,” J. Chem. Phys., 21, 1087–1092.

    Article  CAS  Google Scholar 

  • Smith, A.F.M. and Roberts, G.O. (1993), “Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion),” J. Roy. Statist. Soc. Ser. B, 55, 3–23.

    Google Scholar 

  • Tanner, M.A and Wong, W. (1987), “The calculation of posterior distributions by data augmentation (with discussion),” J. Amer. Statist. Assoc., 82, 528–550.

    Article  Google Scholar 

  • Tierney, L. (1991), “Exploring posterior distributions using Markov chains,” Computer Science and Statistics: Proc. 23rd Symp. Interface, Fairfax Station: Interface Foundation, 563–570.

    Google Scholar 

  • Zeger, S. and Rizaul Karim, M. (1991), Generalized linear models with random effects: A Gibbs sampling approach,” J. Amer. Statist. Assoc., 86, 79–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fridman, M., Steele, J.M. (1994). Three Statistical Technologies with High Potential in Biological Imaging and Modeling. In: Varma, M.N., Chatterjee, A. (eds) Computational Approaches in Molecular Radiation Biology. Basic Life Sciences, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9788-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9788-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9790-9

  • Online ISBN: 978-1-4757-9788-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics