Advertisement

Detection, Computation, and Segmentation of Visual Motion

  • Amar Mitiche
Part of the Advances in Computer Vision and Machine Intelligence book series (ACVM)

Abstract

The three-dimensional interpretation formulations described in previous chapters assumed that visual motion has been detected, measured, and segmented. In the case of point correspondences (Chapter 4), for instance, a number of points have to be extracted (detection) from two or more images of the same rigid object (segmentation) and correspondence established (measurement). Similarly, in the case of optical flow (Chapter 5), a number of points in the image of the same rigid object have to be extracted at which optical velocities are measured.

Keywords

Computer Vision IEEE Transaction Optical Flow Motion Estimation Machine Intelligence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Gibson, The Perception of the Visual World, Houghton Mifflin, Boston (1950).Google Scholar
  2. 2.
    D. A. Gordon, Static and Dynamic Visual Fields in Human Space Perception, Journal of the Optical Society of America, Vol. 55, 1965, pp. 1296–1303.CrossRefGoogle Scholar
  3. 3.
    K. Nakayama and J. M. Loomis, Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis, Perception, Vol. 3, 1974, pp. 63–80.CrossRefGoogle Scholar
  4. 4.
    A. Verri and T. Poggio, Motion Field and Optical Flow: Qualitative Properties, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, 1989, pp. 490–498.CrossRefGoogle Scholar
  5. 5.
    B. K. P. Horn and B. G. Schunck, Determining Optical Flow, Artificial Intelligence, Vol. 17, 1981, pp. 185–203.Google Scholar
  6. 6.
    B. G. Schunck, Image Flow: Fundamentals and Algorithms, in: Motion Understanding: Robot and Human Vision (W. N. Martin and J. K. Aggarwal, eds.), pp. 24–80, Kluwer Academic, Hingham, MA (1988).Google Scholar
  7. 7.
    A. Verri, F. Girosi, and V. Torre, Differential Techniques for Optical Flow, Journal of the Optical Society of America A, Vol. 7, 1990, pp. 912–922.CrossRefGoogle Scholar
  8. 8.
    K. Wohn, L. S. Davis, and P. Thrift, Motion Estimation Based on Multiple Local Constraints and Nonlinear Smoothing, Pattern Recognition, Vol. 16, 1983, pp. 563–570.CrossRefGoogle Scholar
  9. 9.
    A. Mitiche, Y. F. Wang, and J. K. Aggarwal, Experiments in Computing Optical Flow with the Gradient-Based, Multiconstraint Method, Pattern Recognition, Vol. 20, 1987, pp. 173–179.CrossRefGoogle Scholar
  10. 10.
    M. Bertero, T. Poggio, and V. Torre, Ill-Posed Problems in Early Vision, Proceedings of the IEEE, Vol. 76, 1988, pp. 869–890.CrossRefGoogle Scholar
  11. 11.
    R. C. Jain, W. N. Martin, and J. K. Aggarwal, Segmentation through the Detection of Changes Due to Motion, Computer Vision, Graphics and Image Processing, Vol. 11, 1979, pp. 13–34.CrossRefGoogle Scholar
  12. 12.
    M. S. Ulstad, An Algorithm for Estimating Small Scale Differences between Two Digital Images, Pattern Recognition, Vol. 5, 1973, pp. 323–333.CrossRefGoogle Scholar
  13. 13.
    O. S. Wenstop, Motion Detection from Image Infonnation, in: Proceedings of the Third Scandinavian Conference on Image Analysis, Copenhagen, pp. 381–386 (1983).Google Scholar
  14. 14.
    H. J. Eghabli, K-S Test for Detecting Changes from Landsat Imagery data, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-9, No. 1, 1979, pp. 17–23.CrossRefGoogle Scholar
  15. 15.
    Y. Z. Hsu, H. H. Nagel, and G. Rekers, New Likelihood Test Methods for Change Detection in Image Sequences, Computer Vision, Graphics and Image Processing, Vol. 26, 1984, pp. 73–106.CrossRefGoogle Scholar
  16. 16.
    A. Margalit, I. S. Reed, and R. M. Gagliari, Adaptive Optical Target Detection Using Correlated Images, IEEE Transactions Aerospace and Electronic Systems, Vol. 21, No. 3, 1985, pp. 394–405.CrossRefGoogle Scholar
  17. 17.
    M. Basseville, Detecting Changes in Signals and Systems — a Survey, Automatica, Vol. 24, No. 3, 1988, pp. 309–326.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    G. W. Donohoe, D. R. Hush, and N. Ahmed, Change Detection for Target Detection and Classification in Video Sequences, in: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, New York, pp. 1084–1087 (1988).Google Scholar
  19. 19.
    S. D. Blostein and T. S. Huang, Detecting Small, Moving Objects in Image Sequences Using Sequential Hypothesis Testing, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 7, 1991, pp. 1611–1629.Google Scholar
  20. 20.
    T. Aach, A. Kaup, and R. Mester, A Statistical Framework for Change Detection in Image Sequences, in: Proceedings of the Thirteenth Conference GRETSI, Antibes, France, pp. 11491152 (1991).Google Scholar
  21. 21.
    E. L. Lehmann, Testing Statistical Hypotheses, John Wiley, New York (1986).zbMATHCrossRefGoogle Scholar
  22. 22.
    J. Wiklund and G. H. Granlund, Image Sequence Analysis for Object Tracking, in: Proceedings of the Fifth Scandinavian Conference on Image Analysis, pp. 641–648 (1987).Google Scholar
  23. 23.
    R. Lalande and P. Bouthemy, A Statistical Approach to the Detection and Tracking of Moving Objects in an Image Sequence, in: Proceedings of the Fifth Conference Eusipco, Barcelona, pp. 947–950 (1990).Google Scholar
  24. 24.
    R. C. Jain, Dynamic Scene Analysis, in: Progress in Pattern Recognition 2 (L. Kanal and A. Rosenfeld, eds.), pp. 125–167, North Holland (1985).Google Scholar
  25. 25.
    Y. H. Yang and M. D. Levine, The Background Primal Sketch: An Approach for Tracking Moving Objects, Machine Vision and Applications, Vol. 5, 1992, pp. 17–34.CrossRefGoogle Scholar
  26. 26.
    J. R. Jain and H. H. Nagel, On the Analysis of Accumulative Difference Pictures from Image Sequences of Real World Scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 1, No. 2, 1979, pp. 206–214.CrossRefGoogle Scholar
  27. 27.
    P. Spoer, Moving Object Detection by Temporal Frame Difference Accumulation, in: Digital Signal Processing ( V. Capellini and A. G. Constantinides, eds.), pp. 900–907, Elsevier Science Publishers, New York (1984).Google Scholar
  28. 28.
    K. P. Karman and A. Brandt, Moving Object Recognition Using an Adaptive Background Memory, in: Proceedings of the Third International Workshop on Time-varying Image Processing and Moving Object Recognition, Florence, pp. 289–296 (1989).Google Scholar
  29. 29.
    K. R. Karman, A. Brandt, and R. Gerl, Moving Object Segmentation Based on Adaptive Reference Images, in: Proceedings of the Conference Eusipco, Barcelona, pp. 951–954 (1990).Google Scholar
  30. 30.
    A. S. Elfishway, S. B. Kesler, and A. S. Abutaleb, Adaptive Algorithms for Change Detection in Image Sequence, Signal Processing, Vol. 23, No. 2, 1991, pp. 179–191.CrossRefGoogle Scholar
  31. 31.
    A. Cowart, W. Snyder, and W. Ruedger, The Detection of Unresolved Targets Using the Hough Transform, Computer Vision, Graphics and Image Processing, Vol. 21, 1983, pp. 222–238.CrossRefGoogle Scholar
  32. 32.
    Y. Barniv, Dynamic Programming Solution for Detecting Dim Moving Targets, IEEE Transactions Aerospace and Electronic Systems, Vol. AES-21, No. 1, 1985, pp. 144–156.CrossRefGoogle Scholar
  33. 33.
    J. M. Letang, V. Rebuffel, and P. Bouthemy, Motion Detection Based on a Temporal Multi-scale Approach, in: Proceedings of the Eleventh International Conference on Pattern Recognition, The Hague, pp. 65–68 (1992).Google Scholar
  34. 34.
    K. Skifstad and R. Jain, Illumination Independent Change Detection for Real World Image Sequences, Computer Vision, Graphics, and Image Processing, Vol. 46, 1989, pp. 387–399.Google Scholar
  35. 35.
    F. Heitz and R. Bouthemy, Multimodal Estimation of Discontinuous Optical Flow Using Markov Random Fields, INRIA-Rennes Technical Report 561, 1991.Google Scholar
  36. 36.
    V. Markandey and B. E. Flinchbaugh, Multispectral Constraints for Optical Flow Computation, in: Proceedings of the Third International Conference on Computer Vision, Osaka, pp. 38–41 (1990).Google Scholar
  37. 37.
    O. Tretiak and L. Pastor, Velocity Estimation from Image Sequences with Second Order Differential Operators, in: Proceedings of the International Conference of Pattern Recognition and Image Processing, Montreal, pp. 16–19 (1984).Google Scholar
  38. 38.
    M. Campani and A. Verri, Computing Optical Flow from an Overconstrained System of Linear Algebraic Equations, in: Proceedings of the Third International Conference on Computer Vision, Osaka, pp. 22–26 (1990).Google Scholar
  39. 39.
    R. M. Haralick and J. S. Lee, The Facet Approach to Optical Flow, in: Proceedings of the Image Understanding Workshop, Arlington, VA, pp. 84–93 (1983).Google Scholar
  40. 40.
    N. Baaziz and C. Labit, Multigrid Motion Estimation on Wavelet Pyramids for Image Sequence Coding, in: Proceedings of the Seventh Scandinavian Conference on Image Analysis, Aalborg, pp. 1053–1061 (1991).Google Scholar
  41. 41.
    J. K. Kearney and W. B. Thompson, Optical Flow Estimation: An Error Analysis of Gradient-Based Methods with Local Optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, 1987, pp. 229–243.CrossRefGoogle Scholar
  42. 42.
    R. J. Woodham, Multiple Light Source Optical Flow, in: Proceedings of the Third International Conference on Computer Vision, Osaka, pp. 42–46 (1990).Google Scholar
  43. 43.
    H. H. Nagel, On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results, Artificial Intelligence, Vol. 33, 1987, pp. 299–324.CrossRefGoogle Scholar
  44. 44.
    C. Schnorr, Determining Optical Flow from Irregular Domains by Minimizing Quadratic Functionals of a Certain Class, International Journal of Computer Vision, Vol. 6, No. I, 1991, pp. 25–38.Google Scholar
  45. 45.
    S. V. Fogel, The Estimation of Velocity Vector Fields from Time-Varying Image Sequences, Computer Vision, Graphics, and Image Processing: Image Understanding, Vol. 53, No. 3, 1991, pp. 253–287.zbMATHCrossRefGoogle Scholar
  46. 46.
    A. Rosenfeld and A. C. Kak, Digital Picture Processing, Academic Press, Orlando, FL (1982).Google Scholar
  47. 47.
    A. Mitiche, R. Grisell, and K. J. Aggarwal, On Smoothness of a Vector Field — Application to Optical Flow, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 6, 1988, pp. 943–949.zbMATHCrossRefGoogle Scholar
  48. 48.
    H. H. Nagel, Extending the Oriented Smoothness Constraint into Temporal Domain and the Estimation of Derivatives of Optical Flow, in: Proceedings of the First European Conference on Computer Vision, Antibes, France, pp. 138–148 (1990).Google Scholar
  49. 49.
    M. A. Snyder, On the Mathematical Foundations of Smoothness Constraints for the Determination of Optical Flow and Surface Reconstruction, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 11, 1991, pp. 1105–1114.CrossRefGoogle Scholar
  50. 50.
    D. Shulman and J. Aloimonos, (Non-)Rigid Motion Interpretation: A Regularized Approach, Proceedings of the Royal Society of London, B, Vol. 233, 1988, pp. 214–234.Google Scholar
  51. 51.
    K. Wohn and A. M. Waxman, The Analytic Structure of Image Flows: Deformation and Segmentation, Computer Vision, Graphics, and Image Processing,Vol. 49, 1990, pp. 127151.Google Scholar
  52. 52.
    A. Rouge, B. Levy, and A. S. Willsky, Reconstruction of Two-Dimensional Velocity Fields as a Linear Estimation Problem, in: Proceedings of the First International Conference on Computer Vision, London, pp. 646–650 (1987).Google Scholar
  53. M. J. Black and P. Anandan, Robust Dynamic Motion Estimation over Time, in: Proceedings of the Computer Vision and Pattern Recognition Conference, Hawaii, pp. 296–302 (1991).Google Scholar
  54. 54.
    J. Stuller and G. Krishnamurthy, Kalman Filter Formulation of Low-Level Television Motion Estimation, Computer Vision, Graphics, and Image Processing, Vol. 21, 1983, pp. 169–204.CrossRefGoogle Scholar
  55. 55.
    A. Singh, Incremental Estimation of Image Flow Using a Kalman Filter, Journal of Visual Communication and Image Representation, Vol. 3, No. 1, 1992, pp. 39–57.CrossRefGoogle Scholar
  56. 56.
    J. Biemond, L. Looijenga, D. E. Boeke, and R. H. J. M. Plompen, A Pel-Recursive Wiener-Based Displacement Estimation Algorithm, Signal Processing,Vol. 13, No. 4, 1987, pp. 399412.Google Scholar
  57. 57.
    P. Anandan, A Computational Framework and an Algorithm for the Measurement of Visual Motion, International Journal of Computer Vision, Vol. 2, 1989, pp. 283–310.CrossRefGoogle Scholar
  58. 58.
    R. Battiti, E. Amaldi, and C. Koch, Computing Optical Flow across Multiple Scales, International Journal of Computer Vision, Vol. 6, No. 2, 1991, pp. 133–145.CrossRefGoogle Scholar
  59. 59.
    P. J. Burt, J. R. Bergen, R. Hingorani, R. Kolozynski, W. A. Lee, A. Leung, J. Lubin, and H. Shvaytser, Object Tracking with a Moving Camera, in: Proceedings of the IEEE Workshop on Visual Motion, Irvine, CA, pp. 2–12 (1989).Google Scholar
  60. 60.
    W. Enkelmann, Investigations of Multigrid Algorithms for the Estimation of Optical Flow Fields in Image Sequences, Computer Vision, Graphics, and Image Processing, Vol. 43, 1988, pp. 150–177.Google Scholar
  61. 61.
    F. Glazer, Multilevel Relaxation in Low-Level Computer Vision, in: Multiresolution Image Processing and Analysis (A. Rosenfeld, ed.), pp. 312–320, Springer Verlag (1984).Google Scholar
  62. 62.
    J. Konrad and E. Dubois, Multigrid Bayesian Estimation of Image Motion Fields Using Stochastic Relaxation, in: Proceedings of the Second International Conference on Computer Vision, Tarpon Springs, FL, pp. 354–362 (1988).Google Scholar
  63. 63.
    D. Terzopoulos, Image Analysis Using Multigrid Relaxation Methods, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 2, 1986, pp. 129–139.CrossRefGoogle Scholar
  64. 64.
    C. S. Fuh and P. Maragos, Region-Based Optical Flow Estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 130–135 (1989).CrossRefGoogle Scholar
  65. 65.
    N. Cornelius and T. Kanade, Adapting Optical Flow to Measure Object Motion in Reflectance and X-Ray Image Sequences, in: ACM SIGRAPH/SIGART Workshop on Motion, Toronto, pp. 50–58 (1983).Google Scholar
  66. 66.
    M. J. Black, Combining Intensity and Motion for Incremental Segmentation and Tracking Over Long Image Sequences, in: Proceedings of the Second European Conference on Computer Vison, Genoa, pp. 485–493 (1992).Google Scholar
  67. 67.
    H. H. Nagel, Constraints for the Estimation of Displacement Vector Fields from Image Sequences, in: Proceedings of the International Conference on Artificial Intelligence, Karlsruhe, pp. 945–951 (1983).Google Scholar
  68. 68.
    H. H. Nagel and W. Enkelmann, An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 8, No 5 ( 565–593 ). 1986Google Scholar
  69. 69.
    P. Werkhoven and A. Toet, The Estimation of Displacement Vector Fields by Means of Adaptive Affine Transformations, in: Proceedings of the Eighth International Conference on Pattern Recognition, Paris, pp. 798–800 (1986).Google Scholar
  70. 70.
    S. Peleg and H. Rom, Motion-Based Segmentation, in: Proceedings of the Tenth International Conference on Pattern Recognition, Atlantic City, pp. 109–113 (1990).Google Scholar
  71. 71.
    B. G. Schunck, Image Flow Segmentation and Estimation by Constraint Line Clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 10, 1989, pp. 1010–1027.CrossRefGoogle Scholar
  72. 72.
    A. Singh, An Estimation-Theoretic Framework for Image Flow Computation, in: Proceedings of the Third International Conference on Computer Vision, Osaka, pp. 168–177 (1990).Google Scholar
  73. 73.
    S. Geman, D. Geman, C. Graffigne, and P. Dong, Boundary Detection by Constrained Optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, 1990, pp. 609–628.CrossRefGoogle Scholar
  74. 74.
    S. Geman and D. D. Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, No. 6, 1984, pp. 721–741.zbMATHCrossRefGoogle Scholar
  75. 75.
    J. Konrad and E. Dubois, Bayesian Estimation of Discontinuous Motion in Images Using Simulated Annealing, in: Proceedings of the Vision Interface, London, Ontario, Canada, pp. 51–60 (1989).Google Scholar
  76. 76.
    F. Heitz and P. Bouthemy, Multimodal Motion Estimation and Segmentation Using Markov Random Fields, in: Proceedings of the Tenth International Conference on Pattern Recognition, Atlantic City, pp. 378–382 (1990).Google Scholar
  77. 77.
    M. J. Black and P. Anandan, A Model for the Detection of Motion over Time, in: Proceedings of the Third International Conference on Computer Vision, Osaka, pp. 33–37 (1990).Google Scholar
  78. 78.
    R. Thoma and M. Bierling, Motion Compensating Interpolation Considering Covered and Uncovered Background, Signal Processing: Image Communication, Vol. 1, No. 2, 1989, pp. 191–212.CrossRefGoogle Scholar
  79. 79.
    J. J. Little and W. E. Gillett, Direct Evidence for Occlusion in Stereo and Motion, in: Proceedings of the First International Conference on Computer Vision, Antibes, France, pp. 336–340 (1990).Google Scholar
  80. 80.
    A. Spoerri and S. Ullman, The Early Detection of Motion Boundaries, in: Proceedings of the First International Conference on Computer Vision, London, pp. 209–218 (1987).Google Scholar
  81. 81.
    E. Hildreth, Computations Underlying the Measurement of Visual Motion, Artificial Intelligence, Vol. 23, 1984, pp. 309–354.MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    S. Carlsson and C. Reillo, Contour-Based Motion Analysis with Application to Prediction and Segmentation, in: Proceedings of the Fifth Scandinavian Conference on Image Analysis, Stockholm, pp. 513–521 (1987).Google Scholar
  83. 83.
    S. Gong and M. Brady, Parallel Computation of Optical Flow, in: Proceedings of the First International Conference on Computer Vision, Antibes, France, pp. 124–133 (1990).Google Scholar
  84. 84.
    L. S. Davis, Z. Wu, and H. Sun, Contour Based Motion Estimation, Computer Vision, Graphics, and Image Processing, Vol. 23, 1986, pp. 313–326.Google Scholar
  85. 85.
    J. J. Wu, R. E. Rink, T. M. Caelli, and V. G. Gourishankar, Recovery of the 3D Location and Motion of a Rigid Object through Camera Image: An Extended Kalman Filter Approach, International Journal of Computer Vision, Vol. 3, 1991, pp. 373–394.Google Scholar
  86. 86.
    T. Y. Young, W. Z. Zhao, F. H. Qi, and D. Ergener, Computation of Image Velocity Field Using Linear and Nonlinear Objective Functions, in: Proceedings of the Workshop on Computer Vision, Miami Beach, FL, pp. 342–344 (1987).Google Scholar
  87. 87.
    A. M. Waxman and K. Wohn, Contour Evolution, Neighborhood Deformation, and Global Image Flow, International Journal of Robotics Systems, Vol. 4, No. 3, 1985, pp. 95–108.Google Scholar
  88. 88.
    J. H. Duncan, R. L. Owen, L. H. Staib, and P. Anandan, Measurement on Nonrigid Motion Using Contour Shape Descriptor, in: Proceedings of the Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 318–324 (1991).Google Scholar
  89. 89.
    I. Cohen, N. Ayache, and P. Sulger, Tracking Points on Deformable Objects Using Curvature Information, in: Proceedings of the Second European Conference on Computer Vision, Genoa, pp. 458–466 (1992).Google Scholar
  90. 90.
    S. M. Haynes and R. Jain, Detection of Moving Edges, Computer Vision, Graphics, and Image Processing, Vol. 21, 1983, pp. 345–367.Google Scholar
  91. 91.
    B. F. Buxton and H. Buxton, Computation of Optical Flow from the Motion of Edges Features in Image Sequences, Image and Vision Computing, Vol. 2, No. 2, 1984, pp. 59–75.CrossRefGoogle Scholar
  92. 92.
    J. H. Duncan and T. C. Chou, Temporal Edges: the Detection of Motion and the Computation of Optical Flow, in: Proceedings of the Second International Conference on Computer Vision, Tarpon Spring, FL, pp. 374–382 (1988).Google Scholar
  93. 93.
    T. Hwang and J. Clark, On Local Detection of Moving Edges, in: Proceedings of the Tenth International Conference on Pattern Recognition, Atlantic City, pp. 180–181 (1990).Google Scholar
  94. 94.
    H. H. Baker and R. Bolles, Generalizing Epipolar-Plane Image Analysis on the Spatiotemporal Surface, International Journal of Computer Vision, Vol. 3, No. 1, 1989, pp. 33–49.CrossRefGoogle Scholar
  95. 95.
    P. Bouthemy, A Maximum-Likelihood Framework for Determining Moving Edges, IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 11, No. 5, 1989, pp. 499511.Google Scholar
  96. 96.
    M. Allmen and C. R. Dyer, Computing Spatiotemporal Surface Flow, in: Proceedings of the Third International Conference on Computer Vision, Osaka, pp. 47–50 (1990).Google Scholar
  97. 97.
    O. D. Faugeras, On the Motion of 3D Curves and Its Relationship to Optical Flow, in: Proceedings of the First European Conference on Computer Vision, Antibes, France, pp. 107117 (1990).Google Scholar
  98. 98.
    M. A. Gennert and S. Negandaripour, Relaxing the Brightness Constancy Assumption in Computing Optical Flow, MIT AI Lab. Technical Report 975, 1987.Google Scholar
  99. 99.
    C. R. Moloney and E. Dubois, Estimation of Motion Fields from Image Sequences with Illumination Variation, in: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Toronto, pp. 2425–2428 (1991).Google Scholar
  100. 100.
    J. Ma, X. Lu, and C. Wu, A Motion Constraint Under Space-Varying or Time-Varying Illumination, Pattern Recognition Letters, Vol. 5, No. 3, 1987, pp. 203–205.CrossRefGoogle Scholar
  101. 101.
    H. H. Nagel, On a Constraint Equation for the Estimation of Displacement Rates in Image Sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 1, 1989, pp. 13–30.zbMATHCrossRefGoogle Scholar
  102. 102.
    A. M. Waxman, B. Kamgar-Parsi, and M. Subbarao, Closed-Form Solutions to Image Flow Equations for 3D Structure and Motion, International Journal of Computer Vision, Vol. 1, No. 3, 1987, pp. 239–258.CrossRefGoogle Scholar
  103. 103.
    E. P. Simoncelli, E. H. Adelson, and D. J. Heeger, Probability Distributions of Optical Flow, in: Proceedings of the Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 310–315 (1991).Google Scholar
  104. 104.
    B. G. Schunck, Image Flow Continuity Equations for Motion and Density, in: Proceedings of the IEEE Workshop on Motion: Representation and Analysis, Charleston, SC, pp. 89–94 (1986).Google Scholar
  105. 105.
    D. Willick and Y. H. Yang, Experimental Evaluation of Motion Constraint Equations, Computer Vision, Graphics, and Image Processing: Image Understanding, Vol. 54, No. 2, 1991, pp. 206–214.zbMATHCrossRefGoogle Scholar
  106. 106.
    J. K. Aggarwal, L. S. Davis, and W. N. Martin, Correspondence Processes in Dynamic Scene Analysis, Proceedings of the IEEE, Vol. 69, 1981, pp. 562–572.CrossRefGoogle Scholar
  107. 107.
    D. Man, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information, W. H. Freeman, San Fransisco (1982).Google Scholar
  108. 108.
    R. Kories and G. Zimmermann, A Versatile Method for the Estimation of Displacement Vector Field from Image Sequences, in: Proceedings of the IEEE Workshop on Motion: Representation and Analysis, pp. 101–105 (1986).Google Scholar
  109. 109.
    W. Enkelmann, R. Kories, H. H. Nagel, and G. Zimmermann, An Experimental Investigation of Estimation Approaches for Optical Flow Fields, in: Motion Understanding: Robot and Human Vision (W. N. Martin and J. K. Aggarwal, eds.), pp. 189–226, Kluwer Academic, Hingham, MA (1988).Google Scholar
  110. 110.
    P. J. Burt, C. Yen, and X. Xu, Local Correlation Measures for Motion Analysis: A Comparative Study, in: Pattern Recognition and Image Processing Conference, Las Vegas, pp. 269274 (1982).Google Scholar
  111. 111.
    Y. Shirai, Tree-Dimensional Computer Vision, Springer-Verlag, New York (1987).CrossRefGoogle Scholar
  112. 112.
    A. Venot, J. F. Lebruchec, and J. C. Roucayrol, A New Class of Similarity Measures for Robust Image Registration, Computer Vision, Graphics, and Image Processing, Vol. 28, 1984, pp. 176–184.Google Scholar
  113. 113.
    J. M. Prager and M. A. Arbib, Computing the Optic Flow: The MATCH Algorithm and Prediction, Computer Vision, Graphics, and Image Processing, Vol. 24, 1983, pp. 271–304.Google Scholar
  114. 114.
    D. Bamea and H. Silverman, A Class of Algorithms for Fast Digital Image Registration, IEEE Transactions on Computers, Vol. 21, 1972, pp. 179–186.CrossRefGoogle Scholar
  115. 115.
    R. Y. Wong and E. L. Hall, Sequential Hierarchical Scene Matching, IEEE Transactions on Computers, Vol. 27, No. 4, 1978, pp. 359–366.MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    G. Vanderburg and A. Rosenfeld, Two-Stage Template Matching, IEEE Transactions on Computers, Vol. 26, 1977, pp. 384–393.CrossRefGoogle Scholar
  117. 117.
    J. R. Jain and A. K. Jain, Displacement Measurement and Its Application in Interframe Image Coding, IEEE Transactions on Communications,Vol. COM-29, No. 12, 1981, pp. 17991808.Google Scholar
  118. 118.
    R. Paquin and E. Dubois, A Spatiotemporal Gradient Method for Estimating the Displacement Vector Field in Time-Varying Imagery, Computer Vision, Graphics, and Image Processing, Vol. 21, 1983, pp. 205–221.Google Scholar
  119. 119. G. Vanderburg and A. Rosenfeld, Coarse-Fine Template Matching IEEE Transactions on Systems Man and CyberneticsVol. 7, 1977, pp. 104–107. Google Scholar
  120. 120.
    P. Anandan, A Unified Perspective on Computational Techniques for the Measurement of Visual Motion, in: Proceedings of the First International Conference on Computer Vision, London, pp. 219–229 (1987).Google Scholar
  121. 121.
    J. Leese, C. Novak, and B. Clark, An Automated Technique for Obtaining Cloud Motion from Geosynchronous Satellite Data Using Cross-Correlation, Journal of Applied Meteorology, Vol. 10, 1971, pp. 118–132.CrossRefGoogle Scholar
  122. 122.
    Y. Yakimovsky and R. Cunningham, A System for Extracting 3D Measurements from a Stereo Pair of TV Cameras, Computer, Graphics, and Image Processing, Vol. 7, 1978, pp. 195–210.Google Scholar
  123. 123.
    S. T. Barnard and M. A. Fischler, Computational Stereo, Computing Surveys, Vol. 14, No. 4, 1982, pp. 553–572.CrossRefGoogle Scholar
  124. 124.
    D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, NJ (1982).Google Scholar
  125. 125.
    J. C. Jacobus, R. T. Chien, and J. M. Selander, Motion Detection and Analysis of Matching Graphs of Intermediate Level Primitives, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 2, No. 6, 1980, pp. 495–510.Google Scholar
  126. 126.
    S. T. Barnard and W. B. Thompson, Disparity Analysis of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 2, 1980, pp. 333–340.CrossRefGoogle Scholar
  127. 127.
    D. J. Burr, A Dynamic Model for Image Registration, Computer Graphics and Image Processing, Vol. 15, 1981, pp. 102–112.CrossRefGoogle Scholar
  128. 128.
    G. Medioni and R. Nevatia, Matching Images Using Linear Features, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, No. 6, 1984, pp. 675–685.CrossRefGoogle Scholar
  129. 129.
    A. Rosenfeld, R. A. Hummel, and S. W. Zucker, Scene Labeling by Relaxation Operations, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 6, 1976, pp. 420–433.MathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    S. Ullman, The Interpretation of Visual Motion, MIT Press, Cambridge, MA (1979).Google Scholar
  131. 131.
    R. Rashid, Lights: A Study in Motion, in: Proceedings of the Image Understanding Workshop, Los Angeles, pp. 57–68 (1979).Google Scholar
  132. 132.
    R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, John Wiley, New York (1973).zbMATHGoogle Scholar
  133. 133.
    T. J. Broida and R. Chellapa, Estimation of Object Motion Parameters from Noisy Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 1, 1986, pp. 90–99.CrossRefGoogle Scholar
  134. 134.
    T. J. Broida and R. Chellappa, Estimating the Kinematics and Structure of a Rigid Object from a Sequence of Monocular Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 6, 1991, pp. 497–513.CrossRefGoogle Scholar
  135. 135.
    L. Matthies, T. Kanade, and R. Szeleski, Kalman Filter Based Algorithms for Estimating Depth from Image Sequences, International Journal of Computer Vision, Vol. 3, 1989, pp. 209–236.CrossRefGoogle Scholar
  136. 136.
    H. Shariat and K. Price, Motion Estimation with More than Two Frames, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 5, 1990, pp. 417–434.CrossRefGoogle Scholar
  137. 137.
    J. Schick and E. D. Dickmanns, Simultaneous Estimation of 3D Shape and Motion of Objects by Computer Vision, in: Proceedings of the IEEE Workshop on Visual Motion, Princeton, NJ, pp. 256–261 (1991).Google Scholar
  138. 138.
    G. Sandini and M. Tistarelli, Active Tracking Strategy for Monocular Depth Inference over Multiple Frames, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 1, 1990, pp. 13–27.CrossRefGoogle Scholar
  139. 139.
    S. S. Blackman, Multiple Target Tracking with Radar Applications, Artech House (1986).Google Scholar
  140. 140.
    D. B. Reid, An Algorithm for Tracking Multiple Targets, IEEE Transactions on Automatic Control, Vol. 24, No. 6, 1979, pp. 843–854.CrossRefGoogle Scholar
  141. 141.
    R. A. Singer, Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets, IEEE Transactions on Aerospace and Electronic Systems, Vol. 6, No. 4, 1970, pp. 473–483.CrossRefGoogle Scholar
  142. 142.
    Y. Bar-Shalom, Tracking Methods in a Multitarget Environment, IEEE Transactions on Automatic Control, Vol. 23, No. 4, 1978, pp. 618–626.zbMATHCrossRefGoogle Scholar
  143. 143.
    N. C. Mohanty, Computer Tracking of Moving Point Targets in Space, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 3, No. 5, 1981, pp. 606–611.zbMATHCrossRefGoogle Scholar
  144. 144.
    I. K. Sethi and R. Jain, Finding Trajectories of Feature Points in a Monocular Image Sequence, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, No. 1, 1987, pp. 56–73.CrossRefGoogle Scholar
  145. 145.
    V. S. Hwang, Tracking Feature Points in Time-Varying Images Using an Opportunistic Selection Approach, Pattern Recognition, Vol. 22, No. 3, 1989, pp. 247–256.CrossRefGoogle Scholar
  146. 146.
    J. L. Crowley, P. Stelmaszyk, and G. Discours, Measuring Image Flow by Tracking Edge Lines, in: Second International Conference on Computer Vision, Tarpon Springs, FL, pp. 658–664 (1988).Google Scholar
  147. 147.
    R. Deriche and O. Faugeras, Tracking Line Segments, in: First European Conference on Computer Vision, Antibes, France, pp. 259–268 (1990).Google Scholar
  148. 148.
    F. Ferrie, M. D. Levine, and S. W. Zucker, Cell Tracking: A Modeling and Minimization Approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 4, No. 3, 1982, pp. 277–291.CrossRefGoogle Scholar
  149. 149.
    G. R. Letgers and T. Y. Young, A Mathematical Model for Computer Image Tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 4, No. 6, 1982, pp. 583594.Google Scholar
  150. 150.
    R. J. Schalkoff and E. S. McVey, A Model and Tracking Algorithm for a Class of Video Targets, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-4, No. 1, 1982, pp. 2–10.Google Scholar
  151. 151.
    G. L. Gordon, On the Tracking of Featureless Objects with Occlusion, in: IEEE Workshop on Visual Motion, Irvine, CA, pp. 13–20 (1989).Google Scholar
  152. 152.
    F. Meyer and P. Bouthemy, Region-Based Tracking in an Image Sequence, in: Second European Conference on Computer Vision, Genoa, pp. 476–484 (1992).Google Scholar
  153. 153.
    C. D. Kuglin and D. C. Hines, The Phase Correlation Image Alignment Method, in: Proceedings of the International Conference on Cybernetics and Society, pp. 163–165 (Sept. 1975).Google Scholar
  154. 154.
    E. De Castro and C. Morandi, Registration of Translated and Rotated Images Using Finite Fourier Transform, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, 1987, pp. 700–703.CrossRefGoogle Scholar
  155. 155.
    D. J. Heeger, Optical Flow Using Spatiotemporal Filters, International Journal of Computer Vision, Vol. 1, 1987, pp. 279–302.CrossRefGoogle Scholar
  156. 156.
    D. J. Heeger, A Model for the Extraction of Image Flow, Journal of the Optical Society of America A, Vol. 4, 1987, pp. 1455–1471.CrossRefGoogle Scholar
  157. 157.
    A. B. Watson and A. J. Ahamuda, Model of Human Visual-Motion Sensing, Journal of Optical Society of America A, Vol. 2, 1985, pp. 322–342.CrossRefGoogle Scholar
  158. 158.
    E. H. Adelson and J. R. Bergen, Spatiotemporal Energy Models for the Perception of Motion, Journal of the Optical Society of America A, Vol. 2, 1985, pp. 284–299.CrossRefGoogle Scholar
  159. 159.
    E. H. Adelson and J. R. Bergen, The Extraction of Spatiotemporal Energy in Human and Machine Vision, in: Proceedings of the IEEE Workshop on Motion: Representation and Analysis, pp. 151–155 (1986).Google Scholar
  160. 160.
    D. J. Fleet and A. D. Jepson, Velocity Extraction without Form Interpretation, in: Proceedings of the IEEE Workshop on Computer Vision: Representation and Control, pp. 179–185 (1985).Google Scholar
  161. 161.
    D. J. Fleet and A. D. Jepson, Hierarchical Construction of Orientation and Velocity Selective Filters, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 3, 1989, pp. 315–325.CrossRefGoogle Scholar
  162. 162.
    J. G. Bliss, Velocity-Tuned Filters for Spatiotemporal Interpolation, in: Proceedings of the IEEE Workshop on Motion: Representation and Analysis, pp. 61–66 (1986).Google Scholar
  163. 163.
    J. Weng, A Theory of Image Matching, in: Proceedings of the Third International Conference on Computer Vision, Osaka, pp. 200–209 (1990).CrossRefGoogle Scholar
  164. 164.
    L. Jacobson and H. Wechsler, Derivation of Optical Flow Using a Spatiotemporal Frequency Approach, Computer Vision, Graphics, and Image Processing, Vol. 38, 1987, pp. 73–106.CrossRefGoogle Scholar
  165. 165.
    H. Barman, L. Haglund, H. Knutsson, and G. Granlund, Estimation of Velocity, Acceleration, and Disparity in Time Sequences, in: Proceedings of the Workshop on Visual Motion, Princeton, NJ, pp. 44–51 (1991).Google Scholar
  166. 166.
    J. L. Potter, Scene Segmentation Using Motion Information, Computer Graphics and Image Processing, Vol. 6, 1977, pp. 558–581.CrossRefGoogle Scholar
  167. 167.
    B. K. P. Horn, Robot Vision, MIT Press, Cambridge, MA (1986).Google Scholar
  168. 168.
    W. B. Thompson, V. A. Berzins, and K. M. Mutch, Dynamic Occlusion Analysis in Optical Flow Fields, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7, No. 4, 1985, pp. 374–383.CrossRefGoogle Scholar
  169. 169.
    D. Man and E. Hildreth, Theory of Edge Detection, Proceedings of the Royal Society of London, B, Vol. 207, 1980, pp. 187–217.Google Scholar
  170. 170.
    W. B. Thompson and T. G. Pong, Detecting Moving Objects, International Journal of Computer Vision, Vol. 4, 1990, pp. 39–57.CrossRefGoogle Scholar
  171. 171.
    R. C. Nelson, Qualitative Detection of Motion by a Moving Observer, International Journal of Computer Vision, Vol. 7, No. 1, 1991, pp. 33–46.CrossRefGoogle Scholar
  172. 172.
    G. Adiv, Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7, 1985, pp. 384–401.CrossRefGoogle Scholar
  173. 173.
    D. W. Murray and B. F. Buxton, Scene Segmentation from Visual Motion Using Global Optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, No. 2, 1987, pp. 220–228.CrossRefGoogle Scholar
  174. 174.
    R. Hartley, Segmentation of Optical Flow Fields by Pyramid Linking, Pattern Recognition Letters, Vol. 3, 1985, pp. 253–262.CrossRefGoogle Scholar
  175. 175.
    S. Sull and N. Ahuja, Segmentation, Matching and Estimation of Structure and Motion of Textured Piecewise Planar Surfaces, in: Proceedings of the IEEE Workshop on Visual Motion, Princeton, NJ, pp. 274–279 (1991).Google Scholar
  176. 176.
    P. Bouthemy and J. Santillana Rivero, A Hierarchical Likelihood Approach for Region Segmentation According to Motion-Based Criteria, in: First International Conference on Computer Vision, London, pp. 463–467 (1987).Google Scholar
  177. 177.
    E. François and P. Bouthemy, Multiframe-Based Identification of Mobile Components of a Scene with a Moving Camera, in: Proceedings of the Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 166–172 (1991).Google Scholar
  178. 178.
    J. Labuz and J. Schalkoff, New Results Using an Integrated Model and Recursive Algorithm for Image Motion Estimation, Pattern Recognition Letters, Vol. 2, 1984, pp. 179–183.CrossRefGoogle Scholar
  179. 179.
    W. Z. Zhao, F. H. Qi, and T. Y. Young, Dynamic Estimation of Optical Flow Field Using Objective Functions, Image and Vision Computing, Vol. 7, No. 4, 1989, pp. 259–267.CrossRefGoogle Scholar
  180. 180.
    J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, Hierarchical Model-Based Motion Estimation, in: Proceedings of the Second European Conference on Computer Vision, Genoa, pp. 237–252 (1992).Google Scholar
  181. 181.
    S. Negandaripour and S. Lee, Motion Recovery from Image Sequences Using First-Order Optical Flow Information, in: Proceedings of the International Conference on Computer Vision, Princeton, NJ, pp. 132–139 (1991).Google Scholar
  182. 182.
    H. Nicolas and C. Labit, Global Motion Identification for Image Sequence Analysis and Coding, in: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Toronto, pp. 2825–2828 (1991).Google Scholar
  183. 183.
    M. Hoetter, Differential Estimation of the Global Motion Parameters Zoom and Pan, Signal Processing, Vol. 16, 1992, pp. 282–287.Google Scholar
  184. 184.
    M. Irani, B. Rousso, and S. Peleg, Detecting and Tracking Multiple Moving Objects Using Temporal Integration, in: Proceedings of the Second European Conference on Computer Vision, Genova, pp. 282–287 (1992).Google Scholar
  185. 185.
    M. Allmen and C. R. Dyer, Long Range Spatiotemporal Motion Understanding Using Spatiotemporal Flow Curves, in: Proceedings of the Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 303–309 (1991).Google Scholar
  186. 186.
    D. W. Murray and H. Buxton, Experiments in the Machine Interpretation of Visual Motion, MIT Press, Cambridge, MA (1990).Google Scholar
  187. 187.
    P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim, Robust Regression Methods for Computer Vision: A Review, International Journal of Computer Vision, Vol. 6, No. 1, 1991, pp. 59–70.CrossRefGoogle Scholar
  188. 188.
    T. Darrell and A. Pentland, Robust Estimation of a Multi-Layered Motion Representation, in: Proceedings of the Workshop on Visual Motion, Princeton, NJ, pp. 173–178 (1991).Google Scholar
  189. 189.
    J. R. Bergen, P. J. Burt, R. Hingorani, and S. Peleg, Computing Two Motions from Three Frames, in: Proceedings of the Third International Conference on Computer Vision, Osaka, pp. 27–32 (1990).Google Scholar
  190. 190.
    M. Shizawa and K. Mase, Simultaneous Multiple Optical Flow Estimation, in: Proceedings of the IEEE Tenth International Conference on Pattern Recognition, Atlantic City, pp. 274–278 (1990).Google Scholar
  191. 191.
    M. Shizawa and K. Mase, Principle of Superposition: A Common Computational Framework for Analysis of Multiple Motion, in: Proceedings of the IEEE Workshop on Visual Motion, Princeton, NJ, pp. 164–172 (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Amar Mitiche
    • 1
  1. 1.INRS-TelecommunicationsMontrealCanada

Personalised recommendations