Skip to main content

Part of the book series: Advances in Computer Vision and Machine Intelligence ((ACVM))

  • 71 Accesses

Abstract

Our goal is to study the relation between rigid body motion in space and the motion induced by projection on a plane. We are particularly interested in computational schemes that take rigid point structures into account. A rigid point structure is a finite subfamily of points of a rigid body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Gibson, The Perception of the Visual World, Houghton Mifflin, Boston (1950).

    Google Scholar 

  2. J. J. Gibson, Optical Motions and Transformations as Stimuli for Visual Perception, Psychological Review, Vol. 64, 1957, pp. 288–295.

    Article  Google Scholar 

  3. K. Nakayama and J. M. Loomis, Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis, Perception, Vol. 3, 1974, pp. 63–80.

    Article  Google Scholar 

  4. J. J. Koenderink and A. J. van Doom, Invariant Properties of the Motion Parallax Field due to the Movement of Rigid Bodies Relative to an Observer, Optica Acta, Vol. 22, 1975, pp. 773–791.

    Article  Google Scholar 

  5. J. J. Koenderink and A. J. van Doom, Local Structure of Movement Paralax of the Plane, Journal of the Optical Society of America, A, Vol. 66, 1976, pp. 717–723.

    Article  Google Scholar 

  6. W. F. Clocksin, Perception of Surface Slant and Edge Labels from Optical Flow: A Computational Approach, Perception, Vol. 9, 1980, pp. 253–269.

    Article  Google Scholar 

  7. D. D. Hoffman, Inferring Local Surface Orientation from Motion Fields, Journal of the Optical Society of America A, Vol. 72, 1982, pp. 888–892.

    Google Scholar 

  8. H. C. Longuet-Higgins and K. Prazdny, The Interpretation of a Moving Retinal Image, Proceedings of the Royal Society of London B, Vol. 208, 1980, pp. 385–397.

    Article  Google Scholar 

  9. K. Prazdny, Egomotion and Relative Depth Map from Optical Flow, Biological Cybernetics, Vol. 36, 1980, pp. 87–102.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Prazdny, On the Information in Optical Flows, Computer Vision, Graphics, and Image Processing, Vol. 22, 1983, pp. 239–259.

    Article  Google Scholar 

  11. A. R. Bross and B. K. P. Hom, Passive navigation, Computer Vision, Graphics and Image Processing, Vol. 21, 1983, pp. 3–20.

    Article  Google Scholar 

  12. G. Adiv, Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7, 1985, pp. 384–401.

    Article  Google Scholar 

  13. J. H. Rieger and D. T. Lawton, Processing Differential Image Motion, Journal of the Optical Society of America, A, Vol. 2, 1985, pp. 354–360.

    Article  Google Scholar 

  14. A. M. Waxman and S. Ullman, Surface Structure and Three-Dimensional Motion from Image Flow Kinematics, International Journal of Robotics Research, Vol. 4, 1985, pp. 72–94.

    Article  Google Scholar 

  15. M. Subbarao and A. M. Waxman, On the Uniqueness of Image Flow Solutions for Planar Surfaces in Motion, in: Proceedings of the IEEE Workshop on Computer Vision: Representation and Control, Bellaire, MI, pp. 129–140 (1986).

    Google Scholar 

  16. S. Negandaripour and B. K. P. Horn, Direct Passive Navigation, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, No. 1, 1987, pp. 168–176.

    Article  Google Scholar 

  17. S. J. Maybank, The Angular Velocity Associated with the Optical Flow Field Due to a Rigid Moving Body, Proceedings of the Royal Society of London A, Vol. 401, 1985, pp. 317–326.

    Article  MathSciNet  Google Scholar 

  18. S. J. Maybank, Algorithm for Analyzing Optical Flow Based on the Least Squares Method, Image and Vision Computing, Vol. 4, 1986, pp. 38–42.

    Article  Google Scholar 

  19. K. Kanatani, Structure and Motion from Optical Flow under Orthographic Projection, Computer Vision, Graphics, and Image Processing, Vol. 35, 1986, pp. 181–199.

    Article  MATH  Google Scholar 

  20. X. Zhuang and R. M. Haralick, Rigid Body Motion and the Optical Flow Image, in: Proceedings of the First International Conference on Artificial Intelligence Applications, Denver, pp. 366–375 (1984).

    Google Scholar 

  21. X. Zhuang, T. S. Huang, and N. Ahuja, A Simplified Linear Optic Flow Motion Algorithm, Computer Vision, Graphics, and Image Processing, Vol. 42, 1988, pp. 334–343.

    Article  Google Scholar 

  22. A. Mitiche, X. Zhuang, and R. M. Haralick, Interpretation of Optical Flow by Rotation Decoupling, in: Proceedings of the IEEE Workshop on Motion, Miami Beach, FL, pp. 195200 (1987).

    Google Scholar 

  23. C. Lee, R. M. Haralick, and X. Zhuang, Recovering 3D Motion Parameters from Image Sequences with Gross Errors, in: Proceedings of the IEEE Workshop on Visual Motion, Irvine, CA, pp. 46–53 (1989).

    Google Scholar 

  24. P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outliers Detection, John Wiley, New York (1987).

    Book  Google Scholar 

  25. H. C. Longuet-Higgins, The Visual Ambiguity of a Moving Plane, in: Proc. Royal Society London B, pp. 233 ( 165–175 ). 1984

    Google Scholar 

  26. R. Y. Tsai and T. S. Huang, Estimating Three-Dimensional Motion Parameters of a Rigid Planar Patch, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 29, No. 6, 1981, pp. 1147–1152.

    Google Scholar 

  27. R. Y. Tsai, T. S. Huang, and W. Zhu, Estimating Three-Dimensional Motion Parameters of a Rigid Planar Patch, II: Singular Value Decomposition, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 30, No. 4, 1982, pp. 525–534.

    Google Scholar 

  28. O. Faugeras and S. J. Maybank, Motion from Point Matches: Multiplicity of Solutions, International Journal of Computer Vision, Vol. 4, 1990, pp. 225–246.

    Article  Google Scholar 

  29. M. Subbarao and A. M. Waxman, On the Uniqueness of Image Flow Solutions for Planar Surfaces in Motion, Computer Vision, Graphics, and Image Processing, Vol. 36, 1986, pp. 208–228.

    Google Scholar 

  30. B. K. P. Horn and B. G. Schunck, Determining Optical Flow, Artificial Intelligence, Vol. 17, 1981, pp. 185–203.

    Article  Google Scholar 

  31. S. Negandaripour, Direct Passive Navigation, PhD Thesis, Department of Mechanical Engineering, MIT, 1986.

    Google Scholar 

  32. A. M. Waxman, B. Kamgar-Parsi, and M. Subbarao, Closed-Form Solutions to Image Flow Equations for 3D Structure and Motion, International Journal of Computer Vision, Vol. 1, No. 3, 1987, pp. 239–258.

    Article  Google Scholar 

  33. B. K. P. Horn, Motion Fields Are Hardly Ever Ambiguous, International Journal of Computer Vision, Vol. 1, 1987, pp. 259–274.

    Article  Google Scholar 

  34. G. Adiv, Inherent Ambiguities in Recovering 3D Motion and Structure from a Noisy Optical Flow Field, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, pp. 70–77 (1985).

    Google Scholar 

  35. A. Mitiche, On Combining Stereopsis and Kineopsis for Space Perception, in: First International Conference on Artificial Intelligence Applications, Denver, pp. 156–160 (1984).

    Google Scholar 

  36. A. Mitiche and G. Habelrih, Interpretation of Straight Line Correspondences Using Angular Relations, Pattern Recognition, Vol. 22, 1989, pp. 299–308.

    Article  Google Scholar 

  37. A. Mitiche, Three-Dimensional Space from Optical Correspondence, Computer Vision, Graphics, and Image Processing, Vol. 42, 1988, pp. 306–317.

    Google Scholar 

  38. W. Richard, Structure from Stereo and Motion, Journal of the Optical Society of America A, Vol. 2, 1985, pp. 343–349.

    Article  Google Scholar 

  39. A. M. Waxman and S. Sinha, Dynamic Stereo: Passive Ranging to Moving Objects from Relative Image Flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, 1986, pp. 406–412.

    Article  Google Scholar 

  40. A. M. Waxman and J. Duncan, Binocular Image Flows: Steps Toward Stereo-Motion Fusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, 1986, pp. 715–729.

    Article  Google Scholar 

  41. K. Sugihara and N. Sugie, Recovery of Rigid Structure from Orthographically Projected Optical Flow, Computer Vision, Graphics, and Image Processing,Vol. 27, 1984, pp. 309320.

    Google Scholar 

  42. H. Tsukune and J. K. Aggarwal, Analysing Orthographic Projection of Multiple 3D Velocity Vector Fields in Optical Flow, in: Proceedings of the Computer Vision and Pattern Recognition Conference, San Francisco, pp. 510–517 (1985).

    Google Scholar 

  43. J. Barron, A Survey of Approaches for Determining Optical Flow, Environmental Layout, and Egomotion, University of Toronto Dept. of Computer Science Technical Report 84–5, 1984.

    Google Scholar 

  44. S. Ullman, Maximizing Rigidity: The Incremental Recovery of 3D Structure from Rigid and Non-Rigid Motion, Perception, Vol. 13, 1984, pp. 255–274.

    Article  Google Scholar 

  45. E. C. Hildreth and N. Grzywacz, The Incremental Recovery of Structure from Motion: Position vs. Velocity Based Formulations, in: Proceedings of the IEEE Workshop on Motion: Representation and Analysis, pp. 137–143 (1986).

    Google Scholar 

  46. T. J. Broida and R. Chellapa, Estimation of Object Motion Parameters from Noisy Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 1, 1986, pp. 90–99.

    Article  Google Scholar 

  47. T. J. Broida and R. Chellappa, Estimating the Kinematics and Structure of a Rigid Object from a Sequence of Monocular Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 6, 1991, pp. 497–513.

    Article  Google Scholar 

  48. J. Aloimonos and C. M. Brown, Direct Processing of Curvilinear Sensor Motion from a Sequence of Perspective Images, in: Proceedings of the IEEE Workshop on Computer Vision: Representation and Analysis, Annapolis, MD, pp. 72–77 (1984).

    Google Scholar 

  49. B. K. P. Horn and E. J. Weldon, Direct Methods for Recovering Motion, International Journal of Computer Vision, Vol. 2, 1988, pp. 51–76.

    Article  Google Scholar 

  50. H. C. Longuet-Higgins, A Computer Algorithm for Reconstructing a Scene from Two Projections, Nature, Vol. 293, 1981, pp. 133–135.

    Article  Google Scholar 

  51. R. Y. Tsai and T. S. Huang, Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, No. 1, 1984, pp. 13–26.

    Article  MathSciNet  Google Scholar 

  52. S. Ullman, Two-Dimensionality of the Correspondence Process in Apparent Motion, Perception, Vol. 7, 1978, pp. 405–426.

    Article  Google Scholar 

  53. K. Mutch, I. M. Smith, and A. Yonas, The Effect of Two-Dimensional and Three-Dimensional Distance on Apparent Motion, Perception, Vol. 3, 1983, pp. 305–312.

    Article  Google Scholar 

  54. S. Geman and D. D. Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, No. 6, 1984, pp. 721–741.

    Article  MATH  Google Scholar 

  55. J. Konrad and E. Dubois, Bayesian Estimation of Motion Vector Fields, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 9, 1992, pp. 910–927.

    Article  Google Scholar 

  56. D. Geiger and F. Girosi, Parrallel and Deterministic Algorithms from MRFs: Surface Reconstruction and Integration, in: Proceedings of the First European Conference on Computer Vision, Antibes, France, pp. 89–98 (1989).

    Google Scholar 

  57. R. Laganiere and A. Mitiche, Direct Bayesian Estimation of Visual Motion, INRSTélécommunications Technical Report 92–27, 1992.

    Google Scholar 

Bibliography

  1. D. H. Ballard and O. A. Kimball, Rigid Body Motion from Optical Flow and Depth, Computer Vision, Graphics, and Image Processing, Vol. 22, 1983, pp. 95–115.

    Google Scholar 

  2. T. C. Chou and K. Kanatani, Recovering 3D Rigid Motion without Correspondence, in: Proceedings of the First International Conference on Computer Vision, London, pp. 534538 (1987).

    Google Scholar 

  3. J. J. Gibson, P. Olum, and F. Rosenblatt, Parallax and Perspective During Aircraft Landings, American Journal of Psychology, Vol. 68, 1958, pp. 372–385.

    Article  Google Scholar 

  4. E. J. Gibson, J. J. Gibson, O. W. Smith, and H. Flock, Motion Parallax as a Determinant of Perceived Depth, Journal of Experimental Psychology, Vol. 58, 1959, pp. 40–51.

    Article  Google Scholar 

  5. D. D. Hoffman and B. E. Flinchbaugh, The Interpretation of Biological Motion, Biological Cybernetics, Vol. 42, 1982, pp. 195–204.

    MATH  Google Scholar 

  6. B. K. P. Horn, Robot Vision, MIT Press, Cambridge, MA (1986).

    Google Scholar 

  7. R. Jain, Direct Computation of the Focus of Expansion, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 5, No. 1, 1983, pp. 58–64.

    Article  Google Scholar 

  8. C. Jerian and R. Jain, Determining Motion Parameters for Schemes with Translation and Rotation, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, No. 4, 1984, pp. 523–529.

    Article  Google Scholar 

  9. G. Johansson, Visual Motion Perception, Scientific American, Vol. 232, 1975, pp. 76–88.

    Article  Google Scholar 

  10. J. J. Koenderink, Space, Form and Optical Deformations, in: Brain Mechanisms and Spatial Vision ( D. J. Ingle, M. Jeannerod, and D. N. Lee, Eds.), pp. 31–58, Nijhoff, Amsterdam (1985).

    Book  Google Scholar 

  11. J. J. Koenderink and A. J. van Doom, Depth and Shape from Differential Perspective in the Presence of Bending Deformations, Journal of the Optical Society of America A, Vol. 3, 1986, pp. 242–249.

    Article  Google Scholar 

  12. J. J. Koenderink, Optical Flow, Vision Research, Vol. 26, No. 1, 1986, pp. 161–180.

    Article  Google Scholar 

  13. D. T. Lawton, Motion Analysis via Local Translational Motion, in: Proceedings of the Workshop on Computer Vison, Rindge, NH, pp. 59–72 (1982).

    Google Scholar 

  14. K. Nakayama and J. M. Loomis, Optical Velocity Patterns, Velocity-sensitive Neurons, and Space Perception, Perception, Vol. 3, 1974, pp. 63–80.

    Article  Google Scholar 

  15. K. Nakayama, Biological Image Motion Processing: A Review, Vision Research, Vol. 25, 1985, pp. 625–660.

    Article  Google Scholar 

  16. B. Neumann, Optical Flow, Computer Graphics, Vol. 18, No. 1, 1984, pp. 17–19.

    Article  Google Scholar 

  17. K. Prazdny, Determining the Instantaneous Direction of Motion from Optical Flow Generated by a curvilinearly Moving Observer, Computer Graphics and Image Processing, Vol. 17, 1981, pp. 238–248.

    Article  Google Scholar 

  18. J. H. Rieger and D. H. Lawton, Determining the Instantaneous Axis of Translation from Optical Flow Generated by Arbitrary Sensor Motion, in: Proceedings of the Workshop on Motion: Representation and Perception, Toronto, pp. 33–41 (1983).

    Google Scholar 

  19. M. Subbarao and A. M. Waxman, On the Uniqueness of Image Flow Solutions for Planar Surfaces in Motion, in: Proceedings of the IEEE Workshop on Computer Vision: Representation and Control, Bellaire, MI, pp. 129–140 (1986).

    Google Scholar 

  20. M. Subbarao, Solution and Uniqueness of Image Flow Equations for Rigid Curved Surfaces in Motion, in: Proceedings of the First International Conference on Computer Vision, London, pp. 687–692 (1987).

    Google Scholar 

  21. H. Wallach and D. N. O’Connell, The Kinetic Depth Effect, Journal of Experimental Psychology, Vol. 45, 1953, pp. 205–217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mitiche, A. (1994). Optical Flow Interpretation. In: Computational Analysis of Visual Motion. Advances in Computer Vision and Machine Intelligence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9785-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9785-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9787-9

  • Online ISBN: 978-1-4757-9785-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics