Introduction: Image Motion in Visual Function

  • Amar Mitiche
Part of the Advances in Computer Vision and Machine Intelligence book series (ACVM)


Retinal image motion occurs whenever we move about or observe moving objects. Even when we fixate on an object at rest, small eye movements occur that cause image motion. Stabilization of retinal images by some optical device leads quickly to loss of visual perception.


IEEE Transaction Visual Motion Image Motion Motion Parallax Machine Vision System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Nakayama and J. M. Loomis, Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis, Perception, Vol. 3, 1974, pp. 63–80.CrossRefGoogle Scholar
  2. 2.
    J. J. Gibson, The Perception of the Visual World, Houghton Mifflin, Boston, MA (1950).Google Scholar
  3. 3.
    H. Wallach and D. N. O’Connell, The Kinetic Depth Effect, Journal of Experimental Psychology, Vol. 45, 1953, pp. 205–217.CrossRefGoogle Scholar
  4. 4.
    E. J. Gibson, J. J. Gibson, O. W. Smith, and H. Flock, Motion Parallax as a Determinant of Perceived Depth, Journal of Experimental Psychology, Vol. 58, 1959, pp. 40–51.CrossRefGoogle Scholar
  5. 5.
    S. Ullman, The Interpretation of Structure from Motion, Proceedings of the Royal Society London, Vol. B203, 1979, pp. 405–426.CrossRefGoogle Scholar
  6. 6.
    B. J. Rogers and M. Graham, Motion Parallax as an Independent Cue for Depth Perception, Vision Research, Vol. 8, 1979, pp. 125–134.Google Scholar
  7. 7.
    K. Nakayama, Biological Image Motion Processing: A Review, Vision Research, Vol. 25, 1985, pp. 625–660.CrossRefGoogle Scholar
  8. 8.
    B. G. Haskell, D. Pearson, and H. Yamamoto, Low Bit-Rate Coding of Moving Images, Special issue of IEEE Journal on Selected Areas in Communications, Vol. SAC-5, No. 7, 1987, pp. 1065–1067.CrossRefGoogle Scholar
  9. 9.
    A.N. Netavaion and J.D. Robbins, Motion-Compensated Television Coding: Part,Bell Syst. Thch Journal, Vol. 58, No. 3 1979,pp.631–670.Google Scholar
  10. 10.
    J. R. Jain and A. K. Jain, Displacement Measurement and its Application in Interframe Image Coding, IEEE Transactions on Communications,Vol. COM-29, No. 12, 1981, pp. 17991808.Google Scholar
  11. 11.
    M. Bierling and R. Thoma, Motion Compensating Field Interpolation Using a Hierarchically Structured Displacement Estimator, Signal Processing, Vol. 13, 1987, pp. 399–412.CrossRefGoogle Scholar
  12. 12.
    C. Caffioro, F. Rocca, and S. Tubaro, Motion Compensated Image Interpolation, IEEE Transactions on Communications, Vol. COM-38, No. 2, 1990, pp. 215–222.Google Scholar
  13. 13.
    Y. Ninomiya and Y. Ohtsuka, A Motion-Compensated Interframe Coding Scheme for Television Pictures, IEEE Transactions on Communications,Vol. COM-30, No. 1, 1982, pp. 201211.Google Scholar
  14. 14.
    G. Zimmermann, G. Enkelmann, R. Struck, R. Niepold, and R. Kories, Image Sequence Processing for the Derivation of Parameters for the Guidance of Mobile Robots, in: Proceedings of the Intelligent Autonomous Systems Conference, Amsterdam, pp. 654–658 (1986).Google Scholar
  15. 15.
    J. Schick and E. D. Dickmanns, Simultaneous Estimation of 3D Shape and Motion of Objects by Computer Vision, in: Proceedings of the IEEE Workshop on Visual Motion, Princeton, NJ, pp. 256–261 (1991).Google Scholar
  16. 16.
    R. C. Nelson and J. Aloimonos, Obstacle Avoidance Using Flow Field Divergence, IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 11, No. 10, 1989, pp. 11021106.Google Scholar
  17. 17.
    A. R. Bruss and B. K. P. Horn, Passive navigation, Computer Vision, Graphics and Image Processing, Vol. 21, 1983, pp. 3–20.CrossRefGoogle Scholar
  18. 18.
    F. Aguirre, J. M. Boucher, and J. P. Hue, Passive Navigation of a Submersible Vehicle by Image Prcessing, in: Proceedings of the Fourth European Signal Processing Conference, Grenoble, pp. 963–966 (1988).Google Scholar
  19. 19.
    J. Leese, C. Novak, and B. Clark, An Automated Technique for Obtaining Cloud Motion from Geosynchronous Satellite Data Using Cross-Correlation, Journal of Applied Meteorology, Vol. 10, 1971, pp. 118–132.CrossRefGoogle Scholar
  20. 20.
    P. Bouthemy and A. Benveniste, Modeling of Atmospheric Disturbances in Meteorological Pictures, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-6, No. 5, 1984, pp. 587–600.CrossRefGoogle Scholar
  21. 21.
    W. Frei, M. Nagel, and T. Sibata, Digital Image Change Detection, Optical Engineering, Vol. 19, No. 3, 1980, pp. 331–338.CrossRefGoogle Scholar
  22. 22.
    L. Bryan and J. Clark, Potentials for Change Detection Using Seasat Synthetic Aperture Radar Data, Remote Sensing of Environment, Vol. 16, 1984, pp. 107–124.CrossRefGoogle Scholar
  23. 23.
    II. J. Eghabli, K-S Test for Detecting Changes from Landsat Imagery Data, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-9, No. 1, 1979, pp. 17–23.CrossRefGoogle Scholar
  24. 24.
    R. J. Schalkoff and E. S. McVey, A Model and Tracking Algorithm for a Class of Video Targets, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-4, No. 1, 1982, pp. 2–10.Google Scholar
  25. 25.
    J. Y. Chen and I. S. Reed, A Detection Algorithm for Optical Targets in Clutter, IEEE Transactions Aerospace and Electronic Systems, Vol. AES-23, No. 1, 1987, pp. 46–59.CrossRefGoogle Scholar
  26. 26.
    M. Pyeron, A. Waks, G. Gregoriou, O. Tretiak, and I. Bar-Kana, A Robust Hierarchical Probabilistic Framework for Visual Target Tracking, in: IEEE Int. Conference on Acoustics, Speech and Signal Processing, Toronto, pp. 2457–2460 (1991).Google Scholar
  27. 27.
    G. E. Mailloux, F. Langlois, P. L. Simard, and M. Bertrand, Restoration of the Velocity Field of the Heart from Two-Dimensional Echocardiograms, IEEE Transactions on Medical Imaging, Vol. 8, No. 2, 1989, pp. 143–153.CrossRefGoogle Scholar
  28. 28.
    M. Singh, W. Frei, T. Shibata, and G. Huth, A Digital Technique for Accurate Change Detection in Nuclear Medical Images with Application to Myocardial Perfusion Studies Using Thallium-201, IEEE Transactions on Nuclear Science,Vol. NS-26, No. 1, 1979, pp. 565575.Google Scholar
  29. 29.
    J. K. Tsotsos, J. Myopoulos, H. D. Covvey, and S. W. Zucker, A Framework for Visual Motion Understanding, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 2, No. 6, 1980, pp. 563–573.Google Scholar
  30. 30.
    F. Ferne, M. D. Levine, and S. W. Zucker, Cell Tracking: A Modeling and Minimization Approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 4, No. 3, 1982, pp. 277–291.CrossRefGoogle Scholar
  31. 31.
    S. K. Mishra, D. B. Goldgof, and T. S. Huang, Motion Analysis and Epicardial Deformation Estimation from Angiography Data, in: Proceedings of the Computer Vision and Pattern Recognition Conference, Hawaii, pp. 331–336 (1991).Google Scholar
  32. 32.
    M. K. Leung and Y. Yang, A Region Based Approach for Human Body Motion Analysis, Pattern Recognition, Vol. 20, No. 3, 1987, pp. 321–339.CrossRefGoogle Scholar
  33. 33.
    P. Morasso and V. Tagliasco, Analysis of Human Movements: Spatial Localisation with Multiple Perspective Views, Medical and Biological Engineering and Computing, Vol. 21, 1983, pp. 74–82.Google Scholar
  34. 34.
    H. Kobatake, Y. Inoue, T. Namai, and N. Hamba, Measurement of Two-Dimensional Movement of Traffic by Image Processing, in: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 614–617 (1987).Google Scholar
  35. 35.
    H. H. Nagel, From Image Sequences Towards Conceptual Descriptions, Image and Vision Computing, Vol. 6, No. 2, 1988, pp. 59–74.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Amar Mitiche
    • 1
  1. 1.INRS-TelecommunicationsMontrealCanada

Personalised recommendations