Advertisement

A Problem List on Vector Bundles

  • Edoardo Ballico
Part of the The University Series in Mathematics book series (USMA)

Abstract

I think that lists of open problems and questions are very useful, and I would like to see them in print more often (e.g., at the end of every Proceedings volume). Such lists stimulate research, and give more opportunities for researchers to disseminate their results among interested people. Furthermore, such lists can include relevant references, not all of which might be known to a young, isolated researcher.

Keywords

Modulus Space Vector Bundle Hyperelliptic Curve Fano Manifold Holomorphic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. Adams, J. Hamad, and E. Previato, Isospectral Hamiltonian flows in finite and infinite dimension. I: Generalized Moser systems and moment maps into loop algebras, Comm. Math. Phys. 117, 451–500 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    V. Ancona and G. Ottaviani, Canonical resolutions of sheaves on Schubert and Brieskorn varieties, preprint (1989).Google Scholar
  3. 3.
    V. Ancona and G. Ottaviani, On the stability of special instanton bundles on p2n+1, preprint (1990).Google Scholar
  4. 4.
    I. Yu. Artiushkin, Four-dimensional Fano manifolds representable as P’-bundles, Vest. Mosk. Un-ta, Ser. 7, No.1, 12–16 (1987) (in Russian).Google Scholar
  5. 5.
    E. Ballico, On rank 2 vector bundles over an algebraic surface, Forum Math., to appear.Google Scholar
  6. 6.
    E. Ballico and R. Brussee, On the unbalance of vector bundles on a blown-up surface, preprint.Google Scholar
  7. 7.
    E. Ballico and L. Chiantini, Some properties of vector bundles on algebraic surfaces. Forum Math., to appear.Google Scholar
  8. 8.
    E. Ballico and L. Chiantini, Rank 2 bundles on surfaces and seminatural cohomology, preprint (1991).Google Scholar
  9. 9.
    C. Banica, Topologisch triviale holomorphe Vector bundel auf Pn(C), J. Reine Angew. Math. 344, 102–119(1983).zbMATHMathSciNetGoogle Scholar
  10. 10.
    C. Banica and J. Le Potier, Sur l’existence des fibres vectoriels holomorphes sur les surfaces, J. Reine Angew. Math. 378, 1–31 (1987).zbMATHMathSciNetGoogle Scholar
  11. 11.
    C. Banica and M. Putinar, On complex vector bundles on projective threefolds, Invent. Math. 88, 427–438 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    L. Barbieri Viale, K-coomologia e cicli algebrici locali, Comp. Rend. Acad. Sci. Paris 311, 223–228 (1990).zbMATHMathSciNetGoogle Scholar
  13. 13.
    W. Barth, Some properties of stable rank-2 vector bundles on Pn , Math. Ann. 226, 125–150 (1977).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Beauville, Fibrés de rang 2 sur une courbe, fibré déterminant et fonctions theta, Bull. Soc. Math. France 116, 431–448 (1988).zbMATHMathSciNetGoogle Scholar
  15. 15.
    A. Beauville, Jacobiennes des courbes spectrales et systemes hamiltoniens completement integrables, Acta Math. 16, 211–235 (1990).CrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Beilinson, Coherent sheaves on P” and problems of linear algebra. English transl. in Funct. Anal. Appl. 12, 214–216 (1978).CrossRefMathSciNetGoogle Scholar
  17. 17.
    G. Bohnhorst and H. Spindler, The stability of certain vector bundles on Pn, preprint, Osnabrukker (1990).Google Scholar
  18. 18.
    E. Brieskorn, Uber holomorphe Pn-bundel uber P1, Math. Ann. 157, 343–357 (1965).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    V. Brinzanescu and P. Flonder, Holomorphic 2-vector bundles on nonalgebraic 2-tori, J. Reine Angew. Math. 363, 47–58 (1985).zbMATHMathSciNetGoogle Scholar
  20. 20.
    J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators, Proc. London Math. Soc. (2)21, 420–440 (1922);MathSciNetGoogle Scholar
  21. J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators, Proc. R. Soc. London Ser. A 118, 557–583 (1928);zbMATHCrossRefGoogle Scholar
  22. 20c.
    J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators, Proc. London Math. Soc. (2)134,471–485 (1932).Google Scholar
  23. 21.
    P. Dehornoy, Operateurs differentials et courbes elliptiques, Compositio Math. 43, 71–99 (1981).zbMATHMathSciNetGoogle Scholar
  24. 22.
    P. A. Deift, L. C. Li, T. Nanda, and C. Tomei, The Toda flow on a generic orbit is integrable, Comm. Pure Appl. Math. 39, 183–232 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  25. 23.
    I. V. Demin, Three dimensional Fano manifolds representable as line fiberings, Izv. Akad. Nauk SSSR 44, No. 4 (1980); English transi, in Math. USSR Izv. 17; Addendum, Izv. Akad. Nauk SSSR 46, No. 3; English transi, in Math. USSR Izv. 20.MathSciNetGoogle Scholar
  26. 24.
    U. V. Desale and S. Ramanan, Classification of vector bundles of rank 2 on hyperelliptic curves, Invent. Math. 38, 161–185 (1976).zbMATHCrossRefMathSciNetGoogle Scholar
  27. 25.
    S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29, 257–316 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  28. 26.
    I. Ya. Dorfman and F. W. Nijhoff, On a 2 + 1-dimensional version of the Krichever-Novikov equation, INS Preprint No. 167 (1990).Google Scholar
  29. 27.
    J.-M. Drezet, Fibrés exceptionnels et suite spectrale de Beilinson généralizée sur P2, Math. Ann. 275, 25–48 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  30. 28.
    J.-M. Drezet and J. Le Potier, Fibrés stables et fibrés exceptionnels sur P2, Ann, Sci. Ecole Norm. Supp. (4)18, 193–243 (1985).zbMATHGoogle Scholar
  31. 29.
    G. Elencwajg and O. Forster, Bounding cohomology groups of vector bundles on Pn, Math. Ann. 246, 251–270 (1980).zbMATHCrossRefMathSciNetGoogle Scholar
  32. 30.
    G. Elencwajg and O. Forster, Vector bundles on manifolds without divisors and a theorem on deformations, Ann. Inst. Fourier 32, 25–51 (1983).CrossRefMathSciNetGoogle Scholar
  33. 31.
    N. Ercolani and H. Flaschka, The geometry of the Hill equation and of the Neumann system, Philos. Trans. R. Soc. London Ser. A 315, 405–422 (1985).zbMATHCrossRefMathSciNetGoogle Scholar
  34. 32.
    H. Flaschka, Towards an algebro-geometric interpretation of the Neumann system, Tohoku Math. J. 36, 407–426 (1984).zbMATHCrossRefMathSciNetGoogle Scholar
  35. 33.
    H. Flenner, Restrictions of semistable bundles on projective varieties, Comment. Math. Helv. 59, 635–650 (1980).CrossRefMathSciNetGoogle Scholar
  36. 34.
    W. Fulton, Ample vector bundles, Chern classes and numerical criteria, Invent. Math. 32, 171–178 (1976).zbMATHCrossRefMathSciNetGoogle Scholar
  37. 35.
    B. van Geemen, Schottky-Jung relations and vector bundles on hyperelliptic curves, Math. Ann. 281, 431–449 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  38. 36.
    A. L. Gorondentsev, Exceptional bundles on surfaces with a moving anticanonical class, Izv. Akad. Nauk SSSR Ser. Mat. 52, 740–757 (1988) (Russian); English transi, in Math. USSR Izv. 33 (1989).Google Scholar
  39. 37.
    A. L. Gorondentsev, Exceptional bundles on surfaces with a moving anticanonical class, Izv. Akad. Nauk SSSR Ser. Mat. 52, 740–757 (1988) (Russian); English transi, in Math. USSR Izv. 33 (1989).Google Scholar
  40. 38.
    A. L. Gorondentsev and A. N. Rudakov, Exceptional vector bundles on projective spaces, Duke Math. J. 54, 115–130 (1987).CrossRefMathSciNetGoogle Scholar
  41. 39.
    F. A. Grunbaum, The Kadomtsev-Petviashvili equation : An elementary approach to the “rank-2” solutions of Krichever and Novikov, Phys. Lett. A 139, 146–150 (1989).CrossRefMathSciNetGoogle Scholar
  42. 40.
    R. Hartshorne, Stable vector bundles of rank 2 on P3, Math. Ann. 238, 229–286 (1978).zbMATHCrossRefMathSciNetGoogle Scholar
  43. 41.
    R. Hartshorne, Algebraic vector bundles on projective spaces: A problem list, Topology 18, 117–128(1979).zbMATHCrossRefMathSciNetGoogle Scholar
  44. 42.
    R. Hartshorne, Stable reflexive sheaves. Ill, Math. Ann. 279, 517–554 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  45. 43.
    R. Hartshorne and A. Hirschowitz, Nouvelles courbes de bon genre, Math. Ann. 280, 353–367 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  46. 44.
    A. Hirschowitz, Existence de faisceaux réflexifs de rang deux sur P3 à bonne cohomologie, Inst. Hautes Etudes Sci. Publ. Math. 56, 105–137 (1988).MathSciNetGoogle Scholar
  47. 45.
    A. Hirschowitz and K. Hulek, Complete families of stable vector bundles over P2, in Complex Analysis and Algebraic Geometry (Proc. Gottingen 1985), pp. 19–33, Lecture Notes in Math., Vol. 1194, Springer-Verlag, Berlin and New York (1986).CrossRefGoogle Scholar
  48. 46.
    N. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54, 91–114 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  49. 47.
    G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3) 14, 689–713 (1964).zbMATHCrossRefMathSciNetGoogle Scholar
  50. 48.
    K. Hulek and J. Le Potier, Sur l’espace de modules des faisceaux semistable de rang 2, de classes the Chern (0, 3) sur P2, Ann. Inst. Fourier 39, 251–292 (1989).zbMATHCrossRefGoogle Scholar
  51. 49.
    K. Hulek and S. A. Stromme, Appendix to the paper “Complete families of stable vector bundles over P2,” in Complex Analysis and Algebraic Geometry (Proc. Gottingen 1985), pp. 34–40, Lecture Notes in Math., Vol. 1194, Springer-Verlag, Berlin and New York (1986).CrossRefGoogle Scholar
  52. 50.
    M. Idà and M. Manaresi, Rank-two vector bundles on Pn uniform with respect to some rational curves, Arch. Math. 51, 266–273 (1978).CrossRefGoogle Scholar
  53. 51.
    J. F. Jardine and V. P. Snaith (eds.), The Lake Louise problem session, in Algebraic K-Theory: Connections with Geometry and Topology, pp. 516–550, Nato ASI Series C, Vol. 279, Kluwer Academic, Boston (1989).Google Scholar
  54. 52.
    M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92, 479–508 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  55. 53.
    H. Kim, Stable vector bundles on Enriques surfaces, thesis.Google Scholar
  56. 54.
    H. Knorrer, Geodesics on the ellipsoid, Invent. Math. 59, 119–143 (1980).CrossRefMathSciNetGoogle Scholar
  57. 55.
    I. M. Krichever and S. P. Novikov, Holomorphic fiberings and nonlinear equations. Finite zone solutions of rank 2, Soviet Math. Dokl. 20, 650–654 (1979).zbMATHGoogle Scholar
  58. 56.
    N. M. Kumar, Smooth degeneration of complete intersection curves in positive characteristic, Invent. Math. 104, 313–319 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  59. 57.
    G. A. Latham, Solutions of the KP equations associated to rank three commuting differential operators over a singular elliptic curve, Phys. D 41, 55–66 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  60. 58.
    G. A. Latham, The computational approach to commuting ordinary differential operators of orders six and nine, ANU preprint CMA-R28–90.Google Scholar
  61. 59.
    J. Milne, Canonical models of (mixed) Shimura varieties and automorphic vector bundles, in Automorphic Forms, Shimura Varieties, and L-Functions, pp. 283–414, Academic Press, New York (1990).Google Scholar
  62. 60.
    I. O. Mokhov, Commuting differential operators of rank 3, and nonlinear differential equations, Math. USSR Izv. 35, 629–655 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  63. 61.
    S. Mukai, Symplectic structure of the moduli space of sheaves on an Abelian or K3 surface, Invent. Math. 77, 101–116 (1984).zbMATHCrossRefMathSciNetGoogle Scholar
  64. 62.
    S. Mukai, On the moduli space of bundles on K3 surfaces, in Vector Bundles on Algebraic Varieties, pp. 341–413, Oxford Univ. Press (1987).Google Scholar
  65. 63.
    S. Mukai, Duality between D(x) and D(x) with its applications to Picard sheaves, Nagoya Math. J. 81, 153–175 (1981).zbMATHMathSciNetGoogle Scholar
  66. 64.
    S. Mukai, Semi-homogeneous vector bundles on an Abelian variety, J. Math. Kyoto Univ. 18, 239–272 (1978).zbMATHMathSciNetGoogle Scholar
  67. 65.
    D. Mumford, An algebro-geometric construction of commuting operators and of solutions to the Toda-lattice equation, Korteweg-de Vries equation and related non-linear equations, Int. Symp. Algebraic Geometry (Kyoto, 1977), pp. 115–153, Kinokuniya Bookstore, Tokyo (1978).Google Scholar
  68. 66.
    M. S. Narasimhan and G. Trautmann, Compactification of MP3(0, 2) and Poncelet pairs of conics, Pacific J. Math. 145, 225–365 (1990).CrossRefMathSciNetGoogle Scholar
  69. 67.
    C. Okonek and H. Spindler, Mathematical instanton bundles on p2w+1, J. Reine Angew. Math. 364, 35–50 (1986).zbMATHMathSciNetGoogle Scholar
  70. 68.
    C. Okonek and A. Van de Ven, Vector bundles and geometry: Some open problems, Math. Gottingensis 17 (1988).Google Scholar
  71. 69.
    G. Ottaviani, Some extensions of Horrocks criterion to vector bundles on Grassmannians and quadrics, Ann. Mat. 155, 317–341 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  72. 70.
    P. Pragacz and M. Szurek, Bounds of Chern classes of semistable vector bundles, Math. Gottingensis, Schriften. Sonderforsch. Geometrie und Analysis, Heft 22 (1990).Google Scholar
  73. 71.
    E. Previato, Generalized Weierstrass p-funetions and KP flows in affine space, Comment. Math. Helv. 62, 292–310 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  74. 72.
    E. Previato and G. Wilson, Vector bundles over curves and solutions of the KP equations, Proc. Symp. Pure Math., Vol. 49, pp. 553–559 (L. Ehrenpreis and R. C. Gunning, eds.), American Mathematical Society, Providence, RI (1989).Google Scholar
  75. 73.
    E. Previato and G. Wilson, Differential operators and rank two bundles over elliptic curves, preprint (1990).Google Scholar
  76. 74.
    S. Ramanan, Orthogonal and spin bundles over hyperelliptic curves, in V. K. Patodi Memorial Volume, Tata Institute, Bombay (1981).Google Scholar
  77. 75.
    A. Prabhakar Rao, A family of vector bundles on P3, in Space Curves, Lecture Notes in Math., Vol. 1266, pp. 208–231, Springer-Verlag, Berlin and New York (1987).CrossRefGoogle Scholar
  78. 76.
    M. Reid, The complete intersection of two or more quadrics, Dissertation Trinity College, Cambridge (1971).Google Scholar
  79. 77.
    A. N. Rudakov, Markov numbers and exceptional bundles on P2, Izv. Akad. Nauk SSSR Ser. Mat. 52, 100–112 (1988) (Russian); English transi, in Math. USSR Izv. 32 (1989).Google Scholar
  80. 78.
    A. N. Rudakov, Exceptional vector bundles on a quadric, Izv. Akad. Nauk SSSR Ser. Math. 52 (1988) (Russian); English transi, in Math. USSR Izv. 32, 115–138 (1989).Google Scholar
  81. 79.
    U. Schafft, Nichtsepariertheit instabiler Rang-2 Vector bundel auf P2, J. Reine Angew. Math. 338, 136–143 (1983).zbMATHMathSciNetGoogle Scholar
  82. 80.
    R. Schilling, Generalization of the Neumann system—A curve theoretical approach. I, II, Comm. Pure Appl. Math. 40, 455–522 (1987);zbMATHCrossRefMathSciNetGoogle Scholar
  83. 80a.
    R. Schilling, Generalization of the Neumann system—A curve theoretical approach. I, II, Comm. Pure Appl. Math. 42, 409–442 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  84. 81.
    M. Schneider, Cherklassen semi-stabiler Vectorraumbundel vom Rang 3 auf dem komplex-projektiven Raum, J. Reine Angew. Math. 323, 211–220 (1982).Google Scholar
  85. 82.
    M. Schneider, Vector bundles and submanifolds of projective space : Nine open problems, in Algebraic Geometry (Bowdoin 1985), Proc. Symp. Pure Math., Vol. 46, Part 2, pp. 101 – 107, American Mathematical Society, Providence, RI (1987).Google Scholar
  86. 83.
    M. Schneider, Vector bundles and low-codimensional submanifolds of projective space: A problem list, in Topics in Algebra, Banach Center Publications, Vol. 26, Part 2, pp. 209–222, PWN-Polish Scientific Publishers, Warsaw (1990).Google Scholar
  87. 84.
    R. L. E. Schwarzenberger, Vector bundles on algebraic surfaces, Proc. London Math. Soc. (3)11, 601–622 (1961).zbMATHCrossRefMathSciNetGoogle Scholar
  88. 85.
    H. Spindler and G. Trautmann, Special instanton bundles on p2n+1, their geometry and their moduli, Math. Ann. 286, 559–592 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  89. 86.
    S. A. Stromme, Deforming vector bundles on the projective plane, Math. Ann. 263, 385–397 (1983).CrossRefMathSciNetGoogle Scholar
  90. 87.
    S. I. Svinolupov, V. Sokolov, and R. Yamilov, On Backlund transformations for integrable evolution equation, Soviet Math. Dokl. 28, 165–168 (1983).zbMATHGoogle Scholar
  91. 88.
    M. Szurek and J. A. Wisniewski, Fano bundles on P3 and Q3, Pacific J. Math. 141, 197–208 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  92. 89.
    M. Szurek and J. A. Wisniewski, On Fano manifolds which are Pk-bundles over P2, Nagoya Math. J. 120, 89–101 (1990).zbMATHMathSciNetGoogle Scholar
  93. 90.
    M. Szurek and J. A. Wisniewski, Del Pezzo surfaces as conic bundles, preprint.Google Scholar
  94. 91.
    M. Toma, Une classe de fibres vectoriels holomorphes sur les 2-tore complexe, C. R. Acad. Sci. Paris 311, 257–258 (1990).zbMATHMathSciNetGoogle Scholar
  95. 92.
    A. Van de Ven, Twenty years of classifying algebraic vector bundles, in Journées de Géométrie Algébrique, Sijitoff and Noordhoff (1980).Google Scholar
  96. 93.
    H. Vollinger, Moduli von Kernbundeln auf Pat(C), dissertation, Kaiserslautern (1988).Google Scholar
  97. 94.
    C. Weibel, K-theory and analytic isomorphisms, Invent. Math. 61, 177–197 (1980).zbMATHCrossRefMathSciNetGoogle Scholar
  98. 95.
    L. Weng, Non-degeneracy theorem: a note for generic smooth theorem, Max-Planck-Institut, preprint 90–39.Google Scholar
  99. 96.
    G. Wilson, On the quasi-Hamiltonian formalism of the KdV equation, Phys. Lett. A 132, 445–450 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  100. 97.
    J. A. Wisniewski, Ruled Fano 4-folds of index 2, Proc. Am. Math. Soc. 105, 55–61 (1988).CrossRefMathSciNetGoogle Scholar
  101. 98.
    K. Zuo, Regular 2-forms on the moduli space of rank 2 stable bundles on an algebraic surface.Google Scholar
  102. 99.
    K. Zuo, Smoothness of the moduli of rank two stable bundles over an algebraic surface.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Edoardo Ballico
    • 1
  1. 1.Dipartimento di MatematicaUniversità di TrentoPovo TNItaly

Personalised recommendations