Skip to main content

The Amphibians

Class: Amphibia

  • Chapter

Abstract

Amphibia include two major groups: those with tails (subclass Urodela or Caudata) and those without (subclass Anura or Salientia). The name Amphibia derives from the Greek words amphi (“both”) and bios (“mode of life”). The name is appropriate to most Amphibia, which live partly in water and partly on land. They probably differentiated from early fish during the period of great species expansion that occurred about 300 MYA. They are poikilothermic, with body temperatures dependent on the temperature of the environment. Amphibia are intermediate between fishes and reptiles, with many characteristics of each. Respiration is by gills, lungs, or skin, separately or in combination. Gills are present in the early stages of life or throughout life. All Amphibia reproduce in the water. Fertilization is internal or external. Most Amphibia are oviparous, laying large numbers of eggs enclosed in gelatinous material that sticks the eggs together, forming a handball size mass that can often be seen floating in a pond in the early spring.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blofield, A., 1965, A spontaneously active fibrinolytic system in Xenopus laevis which is further activated by human urokinase, Nature (London) 206: 736.

    Article  CAS  Google Scholar 

  2. Hackett, E., and Hann, C., 1964, Erythrocytes and the liquefying of clotted amphibian blood in vitro, Nature (London) 204: 590.

    Article  CAS  Google Scholar 

  3. Hackett, E., and LePage, R., 1961a, The clotting of the blood of an amphibian, Bufo marinus Linn.

    Google Scholar 

  4. Prothrombin—thrombin and “fibrinogen-fibrin” stages, Aust. J. Exp. Biol. 39:57.

    Google Scholar 

  5. Hackett, E., and LePage, R., 1961b, The clotting of the blood of an amphibian, Bufo marinus Linn.

    Google Scholar 

  6. Blood thromboplastic activity, Aust. J. Exp. Biol. 39:67.

    Google Scholar 

  7. Rex, J. O., and Freytag, G. E., 1964, Comparative investigation of the blood coagulation of amphibians, Acta Biol. Med. Ger. 13: 168.

    PubMed  CAS  Google Scholar 

  8. Srivastava, V. M., Dube, B., Dube, R. K., Agarwad, G. P., and Ahmad, N., 1981, Blood fibrinolytic system in Rana tigrina, Thromb. Diath. Haemorrh. 45: 252.

    CAS  Google Scholar 

  9. Stiller, R. A., Belamirich, F. A., and Shepro, D., 1974, Frog thrombocytes: Aggregation and the release reaction, Thromb. Diath. Haemorrh. 32: 685.

    PubMed  CAS  Google Scholar 

  10. Tait, J., and Green, F., 1926, The spindle-cells in relation to coagulation of frog’s blood, Q. J. Exp. Physiol. 16: 141.

    Google Scholar 

Suggested Readings

  • Ahmad, N., Dube, B., Agarwal, G. P., and Dube, R. K., 1979, Comparative studies of blood coagulation in hibernating and non-hibernating frogs (Rana tigrina), Thromb. Haemost. 42: 959.

    PubMed  CAS  Google Scholar 

  • Anstall, H. B., and Huntsman, R. G., 1960, Influence of temperature upon blood coagulation in a cold-and a warm-blooded animal, Nature (London) 166: 726.

    Article  Google Scholar 

  • Baitsell, G. A., 1917, A study of the clotting of the plasma of frog’s blood and the transformation of the clot into a fibrous tissue, Am. Jour. Physiol. 44: 109.

    CAS  Google Scholar 

  • Bertolini, B., and Monaco, G., 1976, The microtubule marginal band of the newt erythrocyte: Observations on the isolated band, J. Ultrastruct. Res. 54: 59.

    Article  PubMed  CAS  Google Scholar 

  • Broyles, R. H., Dorn, A. R., Maples, P. B., Johnson, G. M., Kindell, G. R., and Parkinson, A. M., 1981, Choice of hemoglobin type in erythroid cells of Rana catesbeiana, in: Hemoglobins in Development and Differentiation ( G. Stamatoyannopoulos, and A. W. Nienhius, eds.), p. 179, A. R. Liss, New York.

    Google Scholar 

  • Campbell, F. R., 1970, Ultrastructure of the bone marrow of the frog, Am. J. Anat. 129: 329.

    Article  PubMed  CAS  Google Scholar 

  • Daimon, T., Mizuhira, V., and Uchida, K., 1979, Fine structural distribution of the surface-connected canalicular system in frog thrombocytes, Cell Tissue Res. 201: 431.

    Article  PubMed  CAS  Google Scholar 

  • Dent, J. H., and Schuellein, R. J., 1930, A consideration of the prothrombin times of several amphibians with notes on effects of parasitization and disease, Physiol. Zool. 23: 23.

    Google Scholar 

  • Fey, F., 1966, Vergleichende Hämozytologie niederer Vertebräten. II. Thrombozyten, Folia Haem-atol. 85: 205.

    CAS  Google Scholar 

  • Foxon, G. E. H., 1964, Blood and respiration in: Physiology of the Amphibia (J. A. Moore, ed.), p. 151, Academic Press, London.

    Google Scholar 

  • Gorzula, A., and Arocha-Pinango, C. L., 1975, A coagulation study of Amphisbaena alba linnaeus, Br. J. Herpetol. 5: 629.

    Google Scholar 

  • Gouchi, H., 1982, Ultrastructure of eosinophil granules of bullfrogs, Rana catesbeiana, J. Med. Soc. Toho Univ. 29: 9.

    Google Scholar 

  • Harris, J. A., 1972, Seasonal variation in some hematological characteristics of Rana pipiens, Comp. Biochem. Physiol. A 43: 975.

    CAS  Google Scholar 

  • Jordan, R. E., 1983, Antithrombin in vertebrate species: Conservation of the heparine-dependent anticoagulant mechanism, Arch. Biochem. Biophys. 227: 587.

    Article  PubMed  CAS  Google Scholar 

  • Kase, F., 1978, Letter to the editor: Thrombocytes or spindle cells?, Thromb. Haemost. 39: 775.

    PubMed  CAS  Google Scholar 

  • Kuramoto, M., 1981, Relationships between number, size and shape of red blood cells in amphibians, Comp. Biochem. Physiol. A 69: 771.

    Google Scholar 

  • Pringle, H., and Tait, J., 1910, Natural arrest of hemorrhage in the tadpole, J. Physiol. 40:1vi. Setoguti, T., Fujii, H., and Isono, H., 1970, An electron microscopic study on neutrophil leukocytes of the toad, Bufo vulgaris japonicus, Arch. Histol. Jpn. 32: 87.

    Google Scholar 

  • Sinclair, G. D., and Brasch, K., 1975, The nucleated erythrocyte: A model of cell differentiation, Rev. Can. Biol. 34: 287.

    PubMed  CAS  Google Scholar 

  • Spitzer, J. J., and Spitzer, J. A., 1952, The blood coagulation mechanism of frogs, with respect to the species specificity of thromboplastin, to intracardial thrombin injection, and to the effect of seasonal changes, Can. J. Med. Sci. 30: 420.

    PubMed  CAS  Google Scholar 

  • Tait, J., and Burke, H. E., 1926, Platelets and blood coagulation, Q. J. Exp. Physiol. 16: 129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lewis, J.H. (1996). The Amphibians. In: Comparative Hemostasis in Vertebrates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9768-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9768-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9770-1

  • Online ISBN: 978-1-4757-9768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics