Advertisement

CRT Technology

  • T. R. H. Wheeler
  • M. G. Clark
Part of the Defense Research Series book series (DRSS, volume 3)

Abstract

The cathode-ray tube (CRT) is based on a great deal of underlying science and technology that has been built up over several centuries. Cathode rays were discovered in the mid-19th century and the first working CRTs were demonstrated nearly 100 years ago. The development of the CRT was motivated particularly by three applications: oscilloscopes, television, and radar. Despite the recent dramatic developments in flat-panel displays (see Chapter 4.2), the CRT remains largely supreme in these applications.

Keywords

Phosphor Particle Phosphor Screen High Luminance Ambient Illumination Color Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amano, Y., Sudo, M., Iwaki, I., Ishikawa, Y., Nakayama, A., Murata, A., & Uba, T. (1987). A convergence correction method without beam spot size degradation. In SID Digest, Vol. 18 (pp. 339–342 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  2. Ashizaki, S., Suzuki, Y., Konosu, O., & Adachi, O. (1986). 43“ direct-view color CRT. In Proceedings of Japan Display ‘86 (pp. 226–229 ). Playa del Rey, CA.: Society for Information Display.Google Scholar
  3. Barten, P.G.J. (1988). CRT: present and future. In Society for Information Display 1988 Seminar Lecture Notes, Vol. 2 (pp. 8.1–8. 43 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  4. Basov, N.G., Bogdankevich, O.V., Naisbov, A.S., Koslovskii, V.I., Papusha, V.P., & Pechenov, A.N. (1975). Formation of a TV image on a large screen with the aid of a laser electron-beam tube. Soviet Journal of Quantum Electronics, 4, 1408.CrossRefGoogle Scholar
  5. Berkstrasser, G.W., Shmulovich, J., & Wittenberg, A.M. (1987). Single crystal phosphor development (Tech. Report AAMRL-TR-87–041). Wright-Patterson AFB, OH: Armstrong Aerospace Medical Research Laboratory.Google Scholar
  6. Bhargava, R.N., Colak, S., Fitzpatrick, B.J., Cammack, D.A., & Khurgin, J. (1985). Visible e-beam pumped lasers from II-VI semiconductors. In Proceedings of the 1985 International Display Research Conference (pp. 200–203 ). New York, NY: Institute of Electrical and Electronic Engineers, Inc.Google Scholar
  7. Bogdankevich, O.V. (1974). Construction and some potential applications of electron beam excited semiconductor lasers. Soviet Journal of Quantum Electronics, 3, 455.CrossRefGoogle Scholar
  8. Bonye, G.R., Kavanagh, M., & Bellis, N.S. (1988). Colour CRT screens made by electron beam and UV exposure. In SID Digest, Vol. 19, (pp. 393–394 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  9. Bos, P.J., Buzak, T., & Vatne, R. (1985). A full-color field-sequential color display. Proceedings of the Society for Information Display, 26, 157–161.Google Scholar
  10. Cho, S.L., Park, S.K., Seo, M.S., Jun, S.H., Kim, K.N., Lee, S.W., Lee, S.S., & Lee, S.M. (1989). A new multilens electron gun for color CRTs. In SID Digest, Vol. 20, (pp. 42–44 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  11. Clark, M.G., Leslie, F.M., & Shanks, I.A. (1979). Liquid crystal colour displays. UK Patent 2042202B.Google Scholar
  12. Clark, M.G., & Shanks, I.A. (1982). A field-sequential color CRT using a liquid crystal color switch. In SID Digest, Vol. 13, (pp. 172–173 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  13. De Boer, J.H., & Dippel, C.J. (1934). US Patent 1, 954, 641.Google Scholar
  14. Dietch, L., Palac, K., & Chiodi, W. (1986). Performance of high resolution flat tension mask colour CRTs. In SID Digest, Vol. 17, (pp. 324–326 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  15. Doyeux, H., & House, W.R. (1990). Beam-index cathode-ray tubes. Information Display, 6 (1), 12–15.Google Scholar
  16. Forrester, H. (1990). CRT video projection systems. Information Display, 6 (6), 6–9.Google Scholar
  17. Goesch, T.C. (1990). Head-up displays hit the road. Information Display, 6 (7/8), 10–13.Google Scholar
  18. Grant, D.J.A., & Nicholas, B.M. ( 1989, April). An AS ferroelectric liquid crystal two colour shutter. Paper presented at the British Liquid Crystal Society Annual Conference, Sheffield, England.Google Scholar
  19. Hara, Y., Ogawa, S., Takeuchi, K., & Kanna, K. (1990). A higher current density oxide-coated cathode for CRT use. In SID Digest, Vol. 21, (pp. 442–445 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  20. Herrmann, G., & Wagener, S. (1951). The oxide coated cathode. Vols. 1 and 2. London: Chapman Hall.Google Scholar
  21. Hilsum, C. (1983). Cathode ray tube display device. UK Patent 2139860B. Colour CRT display device. UK Patent 2142808B.Google Scholar
  22. Hilsum, C., & Shanks, I.A. (1974). Colour display systems. UK Patent 1491471.Google Scholar
  23. Hockenbrock, R. (1990). Characteristics of 5x5 and 6x6 inch taut shadow mask CRTs for cockpit displays. Optical Engineering, 29, 843–848.CrossRefGoogle Scholar
  24. Hunt, G.H. (1977). Improvements in or relating to optical screens. UK Patent Application 25090/77.Google Scholar
  25. Ichida, K., Nakayama, Y., & Inouye, H. (1987). A complex lens Trinitron gun for a high resolution color tube. In Proceedings of Eurodisplay 87 (pp. 204–207 ). London, England: Institute of Physics.Google Scholar
  26. Inaba, M., Sato, M., Higashinakagawa, E., & Ohtake, Y. (1988). Characteristics of chromium-added invar with regard to shadow masks for high-resolution colour television tubes. Displays, 9, 17–22.CrossRefGoogle Scholar
  27. Infante, C. (1986). CRT technology-progress and issues. Proceedings of the Society for Information Display, 27, 245–247.Google Scholar
  28. Infante, C. (1988). Advances in CRT displays. Proceedings of the 1988 International Display Research Conference, (pp. 9–12 ). New York, NY: Institute of Electrical and Electronic Engineers, Inc.Google Scholar
  29. Jenkins, R.O. (1969). A review of thermionic cathodes. Vacuum, 19, 353–389.CrossRefGoogle Scholar
  30. Jenzen, E. (1990). Magnetics for beam-index CRTs. Information Display, 6 (6), 10–12.Google Scholar
  31. Klemperer, O., & Barnett, M.E. (1971). Electron optics ( 3rd ed. ). London: Cambridge University Press.zbMATHGoogle Scholar
  32. Law, H.B. (1951). A three gun shadow mask color kinescope. Proceedings of the Indstitute of Radio Engineers, 39, 1186–1194.Google Scholar
  33. Leverenz, H.W. (1950). Luminescence of solids. New York: Wiley.Google Scholar
  34. Moss, H. (1968). Narrow angle electron guns and cathode ray tubes. New York: Academic Press.Google Scholar
  35. Murata, A., Sudo, M., Uba, T., Amano, Y., Takagishi, T., & Takao, N. (1989). Deflection yoke for a Trinitron 20x20 in. color CRT. In SID Digest, Vol. 20, (pp. 49–52 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  36. Nakamura, M., Makino, T., Soematsu, S., & Saito, T. (1988). A 45-in. flat-and-square Trinitron color CRT. In SID Digest, Vol. 19, (pp. 386–388 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  37. Ohno, H., Amano, Y., & Inouye, H. (1989). Super-high-resolution gun with complex prefocus lens for 2Kx2K color display. In SID Digest, Vol. 20, (pp. 45–48 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  38. Ozawa, L. (1990). Cathodoluminescence. Theory and applications. Basel: VCH Verlags AG.Google Scholar
  39. Rengan, A., Remec, T., & Park, Y. (1985). Radiation damage in projection CRT glass. Proceedings of the Society for Information Display, 26, 47–53.Google Scholar
  40. Robertson, J.M., & Van Tol, M.W. (1984). Cathodoluminescent garnet layers. Thin Solid Films, 114, 221–240.CrossRefGoogle Scholar
  41. Saito, S., Tanaka, Y., Yamamoto, M., & Iida, K. (1987). A 6.3 x 6.3 in. avionics beam index CRT. In SID Digest, Vol. 18, (pp. 178–181 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  42. Schwarz, J.W. (1957). Space charge limitation on the focus of electron beams. RCA Review, 18, 1–11.Google Scholar
  43. Shmulovich, J., & Kocian, D.F. (1989). Thin-film phosphors for miniature CRTs used in helmet-mounted displays. In SID Digest, Vol. 20, (pp. 200–202 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  44. Spangenberg, K.R. (1948). Vacuum tubes. New York: McGraw Hill.Google Scholar
  45. Tong, H.S. (1989). A material consideration for flat-tension-mask CRTs. In SID Digest, Vol. 20, (pp. 266–269 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  46. Turner, J.A. (1989). Beam position control-color CRT design considerations. In Proceedings of Japan Display ‘89 (pp. 668–670 ). Playa del Rey, Calif.: Society for Information Display.Google Scholar
  47. Turner, R.E. (1989). Vacuum microelectronics 1989. Bristol, UK: Institute of Physics.Google Scholar
  48. Wilson, I.M. (1975). Theoretical and practical aspects of electron gun design for colour picture tubes. Institute of Electrical and Electronic Engineers Transactions on Consumer Electronics, Vol CE 21 Part 1, 32–38.Google Scholar
  49. Yamazaki, H., & Ohtake, Y. (1986). Discoloration-free invar mask color picture tubes. Toshiba Review No. 156, 29–32.Google Scholar
  50. Yoshida, S., Ohkoshi, A., & Miyaoka, S. (1968). The “Trinitron”—a new color tube. Institute of Electrical and Electronic Engineers Transactions on Broadcast and TV Receivers, BTR-14, 19–27.Google Scholar

Appendix B: Historical Bibliography

  1. Day, J.E. (1958). Recent developments in the cathode-ray oscilloscope. In L. Marton (Ed.), Advances in electronics and electron physics. Volume 10 (pp. 239–299 ). New York: Academic Press.Google Scholar
  2. Rider, J.F., & Uslan, S.D. (1959). Encyclopedia on cathode ray oscilloscopes and their uses ( 2nd ed. ). New York: John F. Rider Publisher, Inc.Google Scholar
  3. Anonymous (1967, September). Colour tube production. Wireless World, 73, 424–427.Google Scholar
  4. Law, H.B. (1976). The shadowmask color picture tube: How it began—an eyewitness account of its early history. Institute of Electrical and Electronics Engineers Transactions on Electronic Devices, 23, 752–759.CrossRefGoogle Scholar
  5. Myers, L.M. (1939). Electron optics: Theoretical and practical. London: Chapman & Hall.zbMATHGoogle Scholar
  6. Yoshida, S., Ohkoshi, A., & Miyaoka, S. (1968). The Trinitron—a new color tube. IEEE Transactions on Broadcast and Television Receivers, 14, 19–27.CrossRefGoogle Scholar
  7. Zworkyin, V.K., & Morton, G.A. (1940). Television. London: Chapman & Hall.Google Scholar
  8. Moss, H. (1950). Cathode ray tube progress in the past decade with special reference to manufacture and design. In L. Marton (Ed.), Advances in electronics. Volume 2 (pp. 145 ). New York: Academic Press.Google Scholar
  9. Watson-Watt, R.A. (1945). Radar in war and peace. Nature, 156, 319–324.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • T. R. H. Wheeler
    • 1
  • M. G. Clark
    • 2
  1. 1.G A Stanley Palmer LtdSurreyUK
  2. 2.GEC Hirst Research CentreMiddlesexUK

Personalised recommendations