Skip to main content

Part of the book series: Defense Research Series ((DRSS,volume 3))

  • 139 Accesses

Abstract

This chapter surveys the major research methods and techniques used in the study of color and its effects on human perception and performance. Although a great many research methods have been devised to obtain quantitative data on human vision, only a small subset of those methods are directly pertinent and useful in the study of color sensitivity and the effects of color.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armington, J.C. (1974). The electroretinogram. New York: Academic Press.

    Google Scholar 

  • Abramson, S.R., Mason, L.H., and Snyder, H.L. (1983). The effects of display errors and font styles upon operator performance with a plasma panel. In Proceedings of the Human Factors Society 27th Annual Meeting (pp. 28–32 ). Santa Monica, CA: Human Factors Society.

    Google Scholar 

  • Baker, K.E. (1949). Some variables influencing vernier acuity. I. Illumination and exposure time. II. Wavelength of illumination. Journal of the Optical Society of America, 39, 567–576.

    Article  Google Scholar 

  • Barber, C. (1984). Convergent features in visual evoked potentials to pattern onset, offset, and reversal. In R.H. Nodar and C. Barber (Eds.), Evoked potentials II. Boston: Butterworth.

    Google Scholar 

  • Baron, W.S. (1980). Cone difference signal in foveal local electroretinogram of primate. Investigative Ophthalmology and Visual Science, 19, 1442–1448.

    Google Scholar 

  • Battistin, L., and Gerstenbrand, F. (1986). Neurology and neurobiology, 21, PET and NMR. New perspectives in neuroimaging and in clinical neurochemistry. New York: Alan R. Liss.

    Google Scholar 

  • Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276–292.

    Article  Google Scholar 

  • Beatty, J., Barth, D.S., Richer, F., and Johnson, R.A. (1986). Neuromagnetometry. In M.G.H. Coles, E. Donchin and S.W. Porges (Eds.), Psychophysiology. New York: Guilford Press.

    Google Scholar 

  • Blankenship, M.H., Trejo, L.J., and Lewis, G.W. (1988a). Brain activity during tactical decision-making: IV. Event-related potentials as indices of selective attention and cognitive workload (NPRDC Tech. Note 88–6 ). San Diego, CA: Navy Personnel Research and Development Center.

    Google Scholar 

  • Blankenship, M.H., Trejo, L.J., and Lewis, G.W. (1988b). Brain activity during tactical decision-making: V. A cross-study validation of evoked potentials as indices of cognitive workload (NPRDC Tech. Note 88–7 ). San Diego, CA: Navy Personnel Research and Development Center.

    Google Scholar 

  • Booker, R.L. (1981). Luminance-brightness comparisons of separated circular stimuli. Journal of the Optical Society of America, 71, 139–144.

    Article  Google Scholar 

  • Boycott, B.B., and Dowling, J.E. (1969). Organization of the primate retina: light microscopy. Philosophical Transactions of the Royal Society of London B, 255, 109184.

    Google Scholar 

  • Boynton, R.M. (1979). Human color vision. New York: Holt, Rinehart and Winston. Boynton, R.M., and Olson, C.X. (1987). Locating basic colors in the OSA space. Color Research and Application, 12, 94–105.

    Google Scholar 

  • Boynton, R.M., and Wisowaty, J.J. (1980). Equations for chromatic discrimination models. Journal of the Optical Society of America, 70, 1471–1475.

    Article  Google Scholar 

  • Butler, T.W., and Riggs, L.A. (1978). Color differences scaled by chromatic modulation sensitivity functions. Vision Research, 18, 1407–1416.

    Article  Google Scholar 

  • Campbell, F.W., and Maffei, L. (1970). Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. Journal of Physiology, 207, 637–652.

    Google Scholar 

  • Carter, R.C., and Carter, E.C. (1983). CIE L*u*v* color difference equations for self-luminous displays. Color Research and Application, 8, 252–253.

    Article  Google Scholar 

  • Christ, R.E. (1975). Review and analysis of color coding research for visual displays. Human Factors, 17, 542–570.

    Google Scholar 

  • Crawford, B.H. (1949). The scotopic visibility function. Proceedings of the Physical Society of London B, 62, 321–334.

    Article  Google Scholar 

  • Defayolle, M., Dinand, J.P., and Gentil, M.T. (1971). Averaged evoked potentials in relation to attitude, mental load and intelligence. In W.T. Singleton, J.G. Fox and D. Whitfield (Eds.), Measurement of man at work. New York: Van Nostrand Reinhold Company.

    Google Scholar 

  • De Monasterio, F.M., Gouras, P., and Tolhurst, D.J. (1975). Trichromatic color opponency in ganglion cells of the rhesus monkey retina. Journal of Physiology, 251, 197–217.

    Google Scholar 

  • De Monasterio, F.M., and Schein, S.J. (1980). Protan-like spectral sensitivity of foveal Y ganglion cells of the retina of macaque monkeys. Journal of Physiology, 299, 385–396.

    Google Scholar 

  • Derrington, A.M., Krauskopf, J., and Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 241–265.

    Google Scholar 

  • De Valois, R.L., Abramov, I., and Jacobs, G.H. (1966). Analysis of response patterns of LGN cells. Journal of the Optical Society of America, 56, 966–977.

    Article  Google Scholar 

  • De Yoe, E.A., and Van Essen, D.C. (1985). Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature, 317, 58–61.

    Article  Google Scholar 

  • Dreher, B., Fukada, Y., and Rodieck, R.W. (1976). Identification, classification, and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates. Journal of Physiology, 258, 433–452.

    Google Scholar 

  • Eason, R.G., Harter, M.R., and White, C.T. (1969). Effects of attention and arousal on visually evoked cortical potentials and reaction time in man. Physiology and Behavior, 4, 283–289.

    Article  Google Scholar 

  • Estevez, O., and Spekreijse, H. (1982). The “silent substitution” method in visual research. Vision Research, 22, 681–691.

    Article  Google Scholar 

  • Estevez, O., Spekreijse, H., Van Den Berg, T.J.T.P., and Cavonius, C.R. (1975). The spectral sensitivities of isolated colour mechanisms determined from contrast EP measurements. Vision Research, 15, 1205–1212.

    Article  Google Scholar 

  • Farley, W.W. (1987). Design and testing of a luminance and chrominance stabilization system for a computer-controlled color display (Tech. Report AAMRL-87–027). Wright-Patterson Air Force Base, OH: Armstrong Aerospace Medical Research Laboratory.

    Google Scholar 

  • Farley, W.W., and Gutmann, J.C. (1980). Digital image processing systems and an approach to the display of colors of specific chrominance (Tech. Report HFL/ONR 80–2 ). Blacksburg, VA: Virginia Polytechnic Institute and State University.

    Google Scholar 

  • Fuster, J.M., and Jervey, J.P. (1981). Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science, 212, 952–954.

    Article  Google Scholar 

  • Gevins, A.S., Morgan, N.H., Bressler, S.L., Cutillo, B.A., White, R.M., Illes, J., Greer, D.S., and Doyle, J.C. (1986). Neuroelectric predictors of performance accuracy (AFOSR Final Report 85–0361 ). Bolling AFB, D.C.: Air Force Office of Scientific Research.

    Google Scholar 

  • Gopher, D., and Donchin, E. (1986). Workload-an examination of the concept. In K. Boff, L. Kaufman and J.P. Thomas (Eds.), Handbook of perception and human performance. Vol. II. New York: Wiley.

    Google Scholar 

  • Green, D.G., and Maaseidvaag, F. (1967). Closed circuit television pupillometer. Journal of the Optical Society of America, 57, 830–833.

    Article  Google Scholar 

  • Granger, E.M., and Heurtley, J.C. (1973). Visual chromaticity-modulation transfer function. Journal of the Optical Society of America, 63, 1173–1174.

    Article  Google Scholar 

  • Hakarem, G., and Sutton, S. (1966). Pupillary response at visual threshold. Nature, 212, 485–486.

    Article  Google Scholar 

  • Harter, M.R., and Aine, C.J. (1984). Brain mechanisms of visual selective attention. In R. Parasuraman and D.R. Davies (Eds.), Varieties of attention. Orlando, FL: Academic Press.

    Google Scholar 

  • Hillyard, S.A., and Picton, T.W. (1987). Electrophysiology of cognition. In Handbook of physiology. Section 1: The nervous system. Volume V: Higher functions of the brain, part 2. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Hitt, W.D. (1961). An evaluation of five different abstract coding methods. Human Factors, 3, 120–130.

    Google Scholar 

  • Hubel, D.H., and Wiesel, T.N. (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London B, 198, 1–59.

    Article  Google Scholar 

  • Hunter, R.S. (1975). The measurement of appearance. New York: Wiley.

    Google Scholar 

  • Indow, T., and Stevens, S.S. (1966). Scaling of saturation and hue. Perception and Psychophysics, 1, 253–271.

    Article  Google Scholar 

  • Ingling, C.R., and Martinez-Uriegas, E. (1983). The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel. Vision Research, 23, 1495–1500.

    Article  Google Scholar 

  • Israel, J.B., Wickens, C.D., Chesney, G.L., and Donchin, E. (1980). The event-related brain potential as an index of display-monitoring workload. Human Factors, 22, 211–224.

    Google Scholar 

  • Johnson, E.P., and Cornsweet, T.N. (1954). Electroretinal photopic sensitivity curves. Nature, 174, 614–616.

    Article  Google Scholar 

  • Johnson, E.P., Riggs, L.A., and Schick, A.M.L. (1966). Photopic retinal potentials evoked by phase alternation of a barred pattern. In H.M. Burian and J.H. Jacobson (Eds.), Clinical electrophysiology. Oxford: Pergamon.

    Google Scholar 

  • Judd, D.B. (1951). Report of U.S. secretariat committee on colorimetry and artificial daylight. In CIE Proceedings, Volume 1 (7), p. 11 (Stockholm, 1951). Paris: Bureau Central de la CIE.

    Google Scholar 

  • Kaiser, P.K., and Boynton, R.M. (1985). Role of the blue mechanism in wavelength discrimination. Vision Research, 25, 523–529.

    Article  Google Scholar 

  • Kaplan, E., Purpura, K., and Shapley, R.M. (1987). Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. Journal of Physiology, 391, 267–288.

    Google Scholar 

  • Karpe, G. (1962). A routine method of clinical electroretinography. Acta Ophthalmologica Supplement, 70, 15–31

    Google Scholar 

  • Kaufman, L., Okada, Y.C., Brenner, D., and Williamson, S.J. (1981). On the relation between somatic evoked potentials and fields. International Journal of Neuroscience, 15, 223–239.

    Article  Google Scholar 

  • Kelly, D.H., and van Norren, D. (1977). Two-band model of heterochromatic flicker. Journal of the Optical Society of America, 67, 1081–1091.

    Article  Google Scholar 

  • Klingaman, R.L., and Moskowitz-Cook, A. (1979). Assessment of the visual acuity of human color mechanisms with the visually evoked potential. Investigative Ophthalmology and Visual Science, 12, 1273–1277.

    Google Scholar 

  • Kohn, M., and Clynes, M. (1969). Color dynamics of the pupil. Annals of the New York Academy of Science, 156, 931–950.

    Article  Google Scholar 

  • Kramer, A.F., Wickens, C.D., and Donchin, E. (1983). An analysis of the processing requirements of a complex perceptual-motor task. Human Factors, 25, 597–621.

    Google Scholar 

  • Krantz, D.H. (1972). Visual scaling. In D. Jameson and L.M. Hurvich (Eds.), Visuapsychophysics. New York: Springer-Verlag.

    Google Scholar 

  • Krauskopf, J. (1973). Contributions of the primary chromatic mechanisms to the generation of visual evoked potentials. Vision Research, 13, 2289–2298.

    Article  Google Scholar 

  • Kurokawa, K., Decker, J.J., Kelly, P.L., and Snyder, H.L. (1988). The effects of image rotation on dot-matrix characters. In Proceedings of the Human Factors Society 32nd Annual Meeting (pp. 1391–1394 ). Santa Monica, CA: Human Factors Society.

    Google Scholar 

  • Land, E.H. (1974). The retinex theory of colour vision. Proceedings of the Royal Institute of Great Britain, 47, 23–57.

    Google Scholar 

  • Lewis, G.W., Trejo, L.J., Naitoh, P., Blankenship, M.H., and Inlow, M. (1989, August). Temporal variability of the neuromagnetic evoked field: Implications for human performance assessment (pp. 217–220 ). In S.S. Williamson, M. Hoke, G. Stroink, and M. Kotani (Eds.), Advances in biomagnetism. New York: Plenum.

    Chapter  Google Scholar 

  • Lewis, G.W., Trejo, L.J., Nunez, P., Weinberg, H., and Naitoh, P. (1987). Evoked neuromagnetic fields: Possible implications for indexing performance. In K. Atsumi, T. Katila, M. Kotani, S.J. Williamson and S. Ueno (Eds.), Biomagnetism 1987. Proceedings of the 6th International Conference on Biomagnetism. Tokyo, Japan.

    Google Scholar 

  • Lippert, T.M. (1986). Color difference prediction of legibility performance for raster CRT imagery. In SID Digest (pp. 86–89 ). New York, NY: Palisades Institute for Research Services, Inc.

    Google Scholar 

  • Livingstone, M.S., and Hubel, D.H. (1983). Specificity of cortico-cortico connections in monkey visual system. Nature, 304, 531–534.

    Article  Google Scholar 

  • Livingstone, M.S., and Hubel, D.H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience, 4, 309–356.

    Google Scholar 

  • Lowenstein, O., and Loewenfeld, I.E. (1969). The pupil. In H. Dayson, (Ed.), The eye. Vol. 3. Muscular mechanisms. New York: Academic Press.

    Google Scholar 

  • MacAdam, D.L. (1937). Projective transformations of ICI color specifications. Journal of the Optical Society of America, 27, 294.

    Article  Google Scholar 

  • MacAdam, D.L. (1942). Visual sensitivities to color differences in daylight. Journal of the Optical Society of America, 32, 247–274.

    Article  Google Scholar 

  • MacLeod, D.I.A., and Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America, 69, 1183 1186.

    Google Scholar 

  • Marks, L.E., and Stevens, J.C. (1966) Individual brightness functions. Perception and Psychophysics, 1, 17–24.

    Article  Google Scholar 

  • Marrocco, R.T., McClurkin, J.W., and Young, R.A. (1982). Spatial summation and conduction latency classification of cells of the lateral geniculate nucleus of macaques. Journal of Neuroscience, 2, 1275–1291.

    Google Scholar 

  • Maunsell, J.H.R., and Newsome, W.T. (1987). Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience, 10, 363–401.

    Article  Google Scholar 

  • Michael, C.R. (1981). Columnar organization of color cells in monkey’s striate cortex. Journal of Neurophysiology, 46, 587–604.

    Google Scholar 

  • Murch, G.M. (1982). Visual accommodation and convergence to multichromatic information displays. In SID Digest (pp. 192–193 ). New York, NY: Palisades Institute for Research Services, Inc.

    Google Scholar 

  • Nagy, A.L., Eskew, R.T., and Boynton, R.M. (1987). Analysis of color-matching ellipses in a cone-excitation space. Journal of the Optical Society of America A, 4, 756–768.

    Article  Google Scholar 

  • Nagy, A.L., and Sanchez, R.R. (1989). Interaction of color and luminance differences for optimal visual search. In SID Digest (pp. 296–299 ). New York, NY: Palisades Institute for Research Services, Inc.

    Google Scholar 

  • Nunez, P.L. (1986a). Locating sources of the brain’s electric and magnetic fields: Some effects of inhomogeneity and multiple sources, with implications for the future (NPRDC Tech. Note 71–86–12). San Diego, CA: Navy Personnel Research and Development Center.

    Google Scholar 

  • Nunez, P.L. (1986b). The brain’s magnetic field: Some effects of multiple sources on localization methods. Electroencephalography and Clinical Neurophysiology, 63, 75–82.

    Article  Google Scholar 

  • Okada, Y.C. (1983). Neurogenesis of evoked magnetic fields. In S.J. Williamson, G.L. Romani, L. Kaufman and I. Modena (Eds.), Biomagnetism: An interdisciplinary approach. New York: Plenum.

    Google Scholar 

  • Okada, Y.C., Kaufman, L., Brenner, D., and Williamson, S.J. (1982). Modulation transfer function of the human visual system revealed by magnetic field measurements. Vision Research, 22, 319–333.

    Article  Google Scholar 

  • Padmos, P., and Van Norren, D. (1971). Cone spectral sensitivity and chromatic adaptation as

    Google Scholar 

  • revealed by human flicker-electroretinography. Vision Research, 11,27–42.

    Google Scholar 

  • Perry, N.W., and Childers, D.G. (1969). The human visual evoked response. Springfield, IL: Thomas.

    Google Scholar 

  • Perry, T.W., Childers, D.G., and Falgout, J.C. (1972). Chromatic specificity of the visual evoked response. Science, 177, 813–815.

    Article  Google Scholar 

  • Picton, T.W. (1988). Introduction. In T. W. Picton, (Ed.), Handbook of electroencephalography and clinical neurophysiology. Revised series. Vol. 3. Human event-related potentials. Amsterdam: Elsevier.

    Google Scholar 

  • Pokorny, J., and Smith, V.C. (1986). Colorimetry and color discrimination. In K.R. Boff, L. Kaufman and J.P. Thomas (Eds.), Handbook of perception and human performance. Volume 1: Sensory processes and perception. New York: Wiley.

    Google Scholar 

  • Post, D.L. (1984). CIELUV/CIELAB and self-luminous displays: Another perspective. Color Research and Application, 9, 244–245.

    Article  Google Scholar 

  • Post, D.L., Costanza, E.B., and Lippert, T.M. (1982). Expressions of color contrast as equivalent achromatic contrast. In Proceedings of the Human Factors Society 26th Annual Meeting (pp. 581–585 ). Santa Monica, CA: Human Factors Society.

    Google Scholar 

  • Post, D.L., and Calhoun, C.S. (1988). Color-name boundaries for equally bright stimuli on a CRT: Phase II. In SID Digest (pp. 65–68 ). New York, NY: Palisades Institute for Research Services, Inc.

    Google Scholar 

  • Post, D.L., Lippert, T.M., and Snyder, H.L. (1983). Color contrast metrics for head-up displays. In Proceedings of the Human Factors Society 27th Annual Meeting (pp. 933937 ). Santa Monica, CA: Human Factors Society.

    Google Scholar 

  • Regan, D. (1970). Objective method of measuring the relative spectral luminosity curve in man. Journal of the Optical Society of America, 60, 856–859.

    Article  Google Scholar 

  • Regan, D. (1972). Evoked potentials to changes in the chromatic contrast and luminance contrast of checkerboard stimulus patterns. In G.B. Arden (Ed.), The Visual System, 8th International ISCERG Symposium. New York: Plenum.

    Google Scholar 

  • Regan, D. (1975). Recent advances in electrical recording from the human brain. Nature, 253, 401–407.

    Article  Google Scholar 

  • Regan, D. (1988). Human visual evoked potentials. In T.W. Picton, (Ed.), Handbook of electroencephalography and clinical neurophysiology. Revised series. Vol. 3. Human event-related potentials. Amsterdam: Elsevier.

    Google Scholar 

  • Richer, F., Barth, D.S., and Beatty, J. (1983). Neuromagnetic localization of the transient visual evoked response to patterned stimulation. Il Nuovo Cimento, 2, 420–428.

    Article  Google Scholar 

  • Riggs, L.A., and Sternheim, C.E. (1969). Human retinal and occipital potentials evoked by changes in the wavelength of the stimulating light. Journal of the Optical Society of America, 59, 635–640.

    Article  Google Scholar 

  • Rodieck, R.W. (1973). The vertebrate retina. San Francisco: W.H. Freeman and Company. Sagawa, K. (1982). Dichoptic color fusion studied with wavelength discrimination. Vision Research, 22, 945–952.

    Google Scholar 

  • Saini, V.D., and Cohen, G.H. (1979). Using color substitution pupil response to expose chromatic mechanisms. Journal of the Optical Society of America, 69, 1029–1035.

    Article  Google Scholar 

  • Sayer, J.R., Sebok, A.L., and Snyder, H.L. (1990). Color difference metrics: Task performance prediction for multichromatic CRT applications as determined by color legibility. In SID Digest (pp. 265–268 ). New York, NY: Palisades Institute for Research Services, Inc.

    Chapter  Google Scholar 

  • Schiller, P.H., and Malpeli, J.G. (1977). Properties and tectal projections of monkey retinal ganglion cells. Journal of Neurophysiology, 40, 428–445.

    Google Scholar 

  • Schiller, P.H., and Malpeli, J.G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology, 41, 788–797.

    Google Scholar 

  • Schober, H., and Wittman, K. (1938). Untersuchungen über die Sehschärfe bei verschieden farbigem Licht. Das Licht: Z praktische Leucht-u.Beleuchtungs-Aufgabe, 8, 199–201.

    Google Scholar 

  • Seiple, W.H., Kupersmith, M.J., Nelson, J.I., and Carr, R.E. (1984). The assessment of evoked potential contrast thresholds using real-time retrieval. Investigative Ophthalmology and Visual Science, 25, 627–631.

    Google Scholar 

  • Shipley, T., Jones, R.W., and Fry, A. (1965). Evoked visual potentials and human color vision. Science, 150, 1162–1164.

    Article  Google Scholar 

  • Shlaer, S., Smith, E.L., and Chase, A.M. (1942). Visual acuity and illumination in different spectral regions. Journal of General Physiology, 25, 553–569.

    Article  Google Scholar 

  • Siegfried, J.B., Tepas, D.I., Sperling, H.G., and Hiss, R.H. (1965). Evoked brain potential correlates of psychophysical responses: Heterochromatic flicker photometry. Science, 149, 321–323.

    Article  Google Scholar 

  • Shipley, T., Jones, R.W., and Fry, A. (1965). Evoked visual potentials and human color vision. Science, 150, 1162–1164.

    Article  Google Scholar 

  • Slooter, J.A., and van Norren, D. (1980). Visual acuity measured with pupil responses to checkerboard stimuli. Investigative Ophthalmology and Visual Science, 19, 105–108.

    Google Scholar 

  • Smith, S.L. (1962). Color coding and visual search. Journal of Experimental Psychology, 64, 434–440.

    Article  Google Scholar 

  • Smith, V.C., and Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research, 16, 161–171.

    Article  Google Scholar 

  • Snyder, H.L. (1984). Image quality: Measures and visual performance. In L.E. Tannas, Jr. (Ed.) Flat panel and CRT displays. New York: Van Nostrand.

    Google Scholar 

  • Snyder, H.L. (1987). Counterintuitive criteria for visual displays. In G. Salvendy, S.L. Sauter and J.J. Hurrell, Jr. (Eds.), Social, ergonomic and stress aspects of work with computers. New York: Elsevier.

    Google Scholar 

  • Snyder, H.L., and Taylor, G.B. (1979). The sensitivity of response measures of alphanumeric legibility to variations in dot matrix display parameters. Human Factors, 21, 457–471.

    Google Scholar 

  • Spekreijse, H., Van Der Tweel, L.H., and Zuidema, T. (1973). Contrast evoked responses in man. Vision Research, 13, 1577–1601.

    Article  Google Scholar 

  • Stevens, S.S. (1975). Psychophysics. New York: Wiley.

    Google Scholar 

  • Task, H.L. (1979). An evaluation and comparison of several measures of image quality for television displays (Tech. Report AMRL-TR-79–7). Wright-Patterson Air Force Base, OH: Aerospace Medical Research Laboratory.

    Google Scholar 

  • Thurstone, L.L. (1927). A law of comparative judgment. Psychological Review, 34, 273286.

    Google Scholar 

  • Torgerson, W.S. (1958). Theory and methods of scaling. New York: Wiley.

    Google Scholar 

  • Trejo, L.J., and Lewis, G.W. (1988). Sensitivity to hue differences measured by visual evoked potentials. In D. Eggleson (Ed.), First Navy Independent Research/Independent Exploratory Development Symposium (CPIA Publication 492 ). Laurel, MD: Chemical Propulsion Information Agency.

    Google Scholar 

  • Trejo, L J., and Lewis, G.W. (1989). Brain mechanisms for human color vision: Implications for display systems. In W.E. Montague (Ed.) IR/IED FY88 Annual Report (NPRDC Report AP-89–7). San Diego, CA: Navy Personnel Research and Development Center.

    Google Scholar 

  • Trejo, L.J., and Lewis, G.W. ( 1989, October). Individual differences in classification of transient, isoluminant, chromatic signals: A behavioral and electrophysiological analysis Paper presented at the Annual Meeting of the Optical Society of America, Orlando, Fl.

    Google Scholar 

  • Trejo, L.J., Lewis, G.W., and Blankenship, M.H. (1987). Brain activity during tactical decision-making: II. Probe-evoked potentials and workload (NPRDC Tech. Note 8812 ). San Diego, CA: Navy Personnel Research and Development Center.

    Google Scholar 

  • Trejo, L.J., Lewis, G.W., and Blankenship, M.H. (1990). Brain activity during decision-making: III. Relationships between probe-evoked potentials, simulation performance, and task performance (NPRDC Tech. Note 90–9 ). San Diego, CA: Navy Personnel Research and Development Center.

    Google Scholar 

  • Tyler, C.W., and Apkarian, P.A. (1985). Effects of contrast, orientation and binocularity in the pattern evoked potential. Vision Research, 25, 755–766.

    Article  Google Scholar 

  • Ueno, T., Pokorny, J., and Smith, V.C. (1985). Reaction times to chromatic stimuli. Vision Research, 25, 1623–1627.

    Article  Google Scholar 

  • Van Der Horst, G.J.C. (1969). Fourier analysis and color discrimination. Journal of the Optical Society of America, 59, 1670–1676.

    Article  Google Scholar 

  • Van Der Horst, G.J.C., and Bouman, M.A. (1969). Spatio-temporal chromaticity discrimination. Journal of the Optical Society of America, 59, 1482–1488.

    Article  Google Scholar 

  • Van Der Kraats, J., Smit, E.P., and Slooter, J.A. (1977). Objective measurements by the pupil balance method. Documenta Ophthalmologica Proceedings Series, 14, 213.

    Google Scholar 

  • Van Norren, D. (1972). Cone spectral sensitivity studied with an ERG method. In G.B. Arden (Ed.), The visual system. Neurophysiology, biophysics, and their clinical applications. New York: Plenum.

    Google Scholar 

  • Van Essen, D.C., and Maunsell, J.H.R. (1983). Hierarchical organization and functional streams in the visual cortex. Trends in Neurosciences, 6, 370–375.

    Article  Google Scholar 

  • Vos, J.J. (1978). Colorimetric and photometric properties of a 2° fundamental observer. Color Research and Application, 3, 125–128.

    Article  Google Scholar 

  • Vos, J.J., and Walraven, P.L. (1971). On the derivation of the foveal receptor primaries. Vision Research, 11, 799–818.

    Article  Google Scholar 

  • Wald, G. (1945). The spectral sensitivity of the human eye; a spectral adaptometer. Journal of the Optical Society of America, 35, 187.

    Article  Google Scholar 

  • Weinstein, G.W., Hobson, R.R., and Baker, F.H. (1971). Extracellular recordings from human retinal ganglion cells. Science, 171, 1021–1022.

    Article  Google Scholar 

  • White, C.T., Kataoka, R., and Martin, J.I. (1977). Colour evoked potentials: Development of a methodology for the analysis of the processes involved in colour vision. In J.E. Desmedt (Ed.), Visual evoked potentials in man: New developments. Oxford: Clarendon Press.

    Google Scholar 

  • Wiesel, T.N., and Hubel, D.H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology, 29, 1115–1156.

    Google Scholar 

  • Wright, K.D., and Pitt, F.H.G. (1934). Hue-discrimination in normal colour-vision. Proceedings of the Physical Society of London, 46, 459–473.

    Article  Google Scholar 

  • Wyszecki, G. (1986). Color appearance. In K.R. Boff, L. Kaufman and J.P. Thomas (Eds.), Handbook of perception and human performance. Volume I: Sensory processes and perception. New York: Wiley. Wyszecki, G., and Stiles, W.S. (1982). Color science. New York: Wiley.

    Google Scholar 

  • Young, R.S.L., and Alpern, M. (1980). Pupil responses to foveal exchange of monochromatic lights. Journal of the Optical Society of America, 70, 697–706.

    Article  Google Scholar 

  • Zeki, S. (1983). Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience, 9, 742–765.

    Google Scholar 

  • Zrenner, E. (1983). The spectral properties of the human visual system as revealed by visually evoked cortical potentials (VECP) and psychophysical investigations. In E. Zrenner (Ed.), Neurophysiological aspects of color vision in primates: Comparative studies on simian retinal ganglion cells and the human visual system, studies of brain function, volume 9, New York: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Snyder, H.L., Trejo, L.J. (1992). Research Methods. In: Widdel, H., Post, D.L. (eds) Color in Electronic Displays. Defense Research Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9754-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9754-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9756-5

  • Online ISBN: 978-1-4757-9754-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics