Research Methods

  • Harry L. Snyder
  • Leonard J. Trejo
Part of the Defense Research Series book series (DRSS, volume 3)

Abstract

This chapter surveys the major research methods and techniques used in the study of color and its effects on human perception and performance. Although a great many research methods have been devised to obtain quantitative data on human vision, only a small subset of those methods are directly pertinent and useful in the study of color sensitivity and the effects of color.

Keywords

Lateral Geniculate Nucleus Optical Society Luminance Contrast Psychophysical Method Physiological Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armington, J.C. (1974). The electroretinogram. New York: Academic Press.Google Scholar
  2. Abramson, S.R., Mason, L.H., and Snyder, H.L. (1983). The effects of display errors and font styles upon operator performance with a plasma panel. In Proceedings of the Human Factors Society 27th Annual Meeting (pp. 28–32 ). Santa Monica, CA: Human Factors Society.Google Scholar
  3. Baker, K.E. (1949). Some variables influencing vernier acuity. I. Illumination and exposure time. II. Wavelength of illumination. Journal of the Optical Society of America, 39, 567–576.CrossRefGoogle Scholar
  4. Barber, C. (1984). Convergent features in visual evoked potentials to pattern onset, offset, and reversal. In R.H. Nodar and C. Barber (Eds.), Evoked potentials II. Boston: Butterworth.Google Scholar
  5. Baron, W.S. (1980). Cone difference signal in foveal local electroretinogram of primate. Investigative Ophthalmology and Visual Science, 19, 1442–1448.Google Scholar
  6. Battistin, L., and Gerstenbrand, F. (1986). Neurology and neurobiology, 21, PET and NMR. New perspectives in neuroimaging and in clinical neurochemistry. New York: Alan R. Liss.Google Scholar
  7. Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276–292.CrossRefGoogle Scholar
  8. Beatty, J., Barth, D.S., Richer, F., and Johnson, R.A. (1986). Neuromagnetometry. In M.G.H. Coles, E. Donchin and S.W. Porges (Eds.), Psychophysiology. New York: Guilford Press.Google Scholar
  9. Blankenship, M.H., Trejo, L.J., and Lewis, G.W. (1988a). Brain activity during tactical decision-making: IV. Event-related potentials as indices of selective attention and cognitive workload (NPRDC Tech. Note 88–6 ). San Diego, CA: Navy Personnel Research and Development Center.Google Scholar
  10. Blankenship, M.H., Trejo, L.J., and Lewis, G.W. (1988b). Brain activity during tactical decision-making: V. A cross-study validation of evoked potentials as indices of cognitive workload (NPRDC Tech. Note 88–7 ). San Diego, CA: Navy Personnel Research and Development Center.Google Scholar
  11. Booker, R.L. (1981). Luminance-brightness comparisons of separated circular stimuli. Journal of the Optical Society of America, 71, 139–144.CrossRefGoogle Scholar
  12. Boycott, B.B., and Dowling, J.E. (1969). Organization of the primate retina: light microscopy. Philosophical Transactions of the Royal Society of London B, 255, 109184.Google Scholar
  13. Boynton, R.M. (1979). Human color vision. New York: Holt, Rinehart and Winston. Boynton, R.M., and Olson, C.X. (1987). Locating basic colors in the OSA space. Color Research and Application, 12, 94–105.Google Scholar
  14. Boynton, R.M., and Wisowaty, J.J. (1980). Equations for chromatic discrimination models. Journal of the Optical Society of America, 70, 1471–1475.CrossRefGoogle Scholar
  15. Butler, T.W., and Riggs, L.A. (1978). Color differences scaled by chromatic modulation sensitivity functions. Vision Research, 18, 1407–1416.CrossRefGoogle Scholar
  16. Campbell, F.W., and Maffei, L. (1970). Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. Journal of Physiology, 207, 637–652.Google Scholar
  17. Carter, R.C., and Carter, E.C. (1983). CIE L*u*v* color difference equations for self-luminous displays. Color Research and Application, 8, 252–253.CrossRefGoogle Scholar
  18. Christ, R.E. (1975). Review and analysis of color coding research for visual displays. Human Factors, 17, 542–570.Google Scholar
  19. Crawford, B.H. (1949). The scotopic visibility function. Proceedings of the Physical Society of London B, 62, 321–334.CrossRefGoogle Scholar
  20. Defayolle, M., Dinand, J.P., and Gentil, M.T. (1971). Averaged evoked potentials in relation to attitude, mental load and intelligence. In W.T. Singleton, J.G. Fox and D. Whitfield (Eds.), Measurement of man at work. New York: Van Nostrand Reinhold Company.Google Scholar
  21. De Monasterio, F.M., Gouras, P., and Tolhurst, D.J. (1975). Trichromatic color opponency in ganglion cells of the rhesus monkey retina. Journal of Physiology, 251, 197–217.Google Scholar
  22. De Monasterio, F.M., and Schein, S.J. (1980). Protan-like spectral sensitivity of foveal Y ganglion cells of the retina of macaque monkeys. Journal of Physiology, 299, 385–396.Google Scholar
  23. Derrington, A.M., Krauskopf, J., and Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 241–265.Google Scholar
  24. De Valois, R.L., Abramov, I., and Jacobs, G.H. (1966). Analysis of response patterns of LGN cells. Journal of the Optical Society of America, 56, 966–977.CrossRefGoogle Scholar
  25. De Yoe, E.A., and Van Essen, D.C. (1985). Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature, 317, 58–61.CrossRefGoogle Scholar
  26. Dreher, B., Fukada, Y., and Rodieck, R.W. (1976). Identification, classification, and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates. Journal of Physiology, 258, 433–452.Google Scholar
  27. Eason, R.G., Harter, M.R., and White, C.T. (1969). Effects of attention and arousal on visually evoked cortical potentials and reaction time in man. Physiology and Behavior, 4, 283–289.CrossRefGoogle Scholar
  28. Estevez, O., and Spekreijse, H. (1982). The “silent substitution” method in visual research. Vision Research, 22, 681–691.CrossRefGoogle Scholar
  29. Estevez, O., Spekreijse, H., Van Den Berg, T.J.T.P., and Cavonius, C.R. (1975). The spectral sensitivities of isolated colour mechanisms determined from contrast EP measurements. Vision Research, 15, 1205–1212.CrossRefGoogle Scholar
  30. Farley, W.W. (1987). Design and testing of a luminance and chrominance stabilization system for a computer-controlled color display (Tech. Report AAMRL-87–027). Wright-Patterson Air Force Base, OH: Armstrong Aerospace Medical Research Laboratory.Google Scholar
  31. Farley, W.W., and Gutmann, J.C. (1980). Digital image processing systems and an approach to the display of colors of specific chrominance (Tech. Report HFL/ONR 80–2 ). Blacksburg, VA: Virginia Polytechnic Institute and State University.Google Scholar
  32. Fuster, J.M., and Jervey, J.P. (1981). Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science, 212, 952–954.CrossRefGoogle Scholar
  33. Gevins, A.S., Morgan, N.H., Bressler, S.L., Cutillo, B.A., White, R.M., Illes, J., Greer, D.S., and Doyle, J.C. (1986). Neuroelectric predictors of performance accuracy (AFOSR Final Report 85–0361 ). Bolling AFB, D.C.: Air Force Office of Scientific Research.Google Scholar
  34. Gopher, D., and Donchin, E. (1986). Workload-an examination of the concept. In K. Boff, L. Kaufman and J.P. Thomas (Eds.), Handbook of perception and human performance. Vol. II. New York: Wiley.Google Scholar
  35. Green, D.G., and Maaseidvaag, F. (1967). Closed circuit television pupillometer. Journal of the Optical Society of America, 57, 830–833.CrossRefGoogle Scholar
  36. Granger, E.M., and Heurtley, J.C. (1973). Visual chromaticity-modulation transfer function. Journal of the Optical Society of America, 63, 1173–1174.CrossRefGoogle Scholar
  37. Hakarem, G., and Sutton, S. (1966). Pupillary response at visual threshold. Nature, 212, 485–486.CrossRefGoogle Scholar
  38. Harter, M.R., and Aine, C.J. (1984). Brain mechanisms of visual selective attention. In R. Parasuraman and D.R. Davies (Eds.), Varieties of attention. Orlando, FL: Academic Press.Google Scholar
  39. Hillyard, S.A., and Picton, T.W. (1987). Electrophysiology of cognition. In Handbook of physiology. Section 1: The nervous system. Volume V: Higher functions of the brain, part 2. Bethesda, MD: American Physiological Society.Google Scholar
  40. Hitt, W.D. (1961). An evaluation of five different abstract coding methods. Human Factors, 3, 120–130.Google Scholar
  41. Hubel, D.H., and Wiesel, T.N. (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London B, 198, 1–59.CrossRefGoogle Scholar
  42. Hunter, R.S. (1975). The measurement of appearance. New York: Wiley.Google Scholar
  43. Indow, T., and Stevens, S.S. (1966). Scaling of saturation and hue. Perception and Psychophysics, 1, 253–271.CrossRefGoogle Scholar
  44. Ingling, C.R., and Martinez-Uriegas, E. (1983). The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel. Vision Research, 23, 1495–1500.CrossRefGoogle Scholar
  45. Israel, J.B., Wickens, C.D., Chesney, G.L., and Donchin, E. (1980). The event-related brain potential as an index of display-monitoring workload. Human Factors, 22, 211–224.Google Scholar
  46. Johnson, E.P., and Cornsweet, T.N. (1954). Electroretinal photopic sensitivity curves. Nature, 174, 614–616.CrossRefGoogle Scholar
  47. Johnson, E.P., Riggs, L.A., and Schick, A.M.L. (1966). Photopic retinal potentials evoked by phase alternation of a barred pattern. In H.M. Burian and J.H. Jacobson (Eds.), Clinical electrophysiology. Oxford: Pergamon.Google Scholar
  48. Judd, D.B. (1951). Report of U.S. secretariat committee on colorimetry and artificial daylight. In CIE Proceedings, Volume 1 (7), p. 11 (Stockholm, 1951). Paris: Bureau Central de la CIE.Google Scholar
  49. Kaiser, P.K., and Boynton, R.M. (1985). Role of the blue mechanism in wavelength discrimination. Vision Research, 25, 523–529.CrossRefGoogle Scholar
  50. Kaplan, E., Purpura, K., and Shapley, R.M. (1987). Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. Journal of Physiology, 391, 267–288.Google Scholar
  51. Karpe, G. (1962). A routine method of clinical electroretinography. Acta Ophthalmologica Supplement, 70, 15–31Google Scholar
  52. Kaufman, L., Okada, Y.C., Brenner, D., and Williamson, S.J. (1981). On the relation between somatic evoked potentials and fields. International Journal of Neuroscience, 15, 223–239.CrossRefGoogle Scholar
  53. Kelly, D.H., and van Norren, D. (1977). Two-band model of heterochromatic flicker. Journal of the Optical Society of America, 67, 1081–1091.CrossRefGoogle Scholar
  54. Klingaman, R.L., and Moskowitz-Cook, A. (1979). Assessment of the visual acuity of human color mechanisms with the visually evoked potential. Investigative Ophthalmology and Visual Science, 12, 1273–1277.Google Scholar
  55. Kohn, M., and Clynes, M. (1969). Color dynamics of the pupil. Annals of the New York Academy of Science, 156, 931–950.CrossRefGoogle Scholar
  56. Kramer, A.F., Wickens, C.D., and Donchin, E. (1983). An analysis of the processing requirements of a complex perceptual-motor task. Human Factors, 25, 597–621.Google Scholar
  57. Krantz, D.H. (1972). Visual scaling. In D. Jameson and L.M. Hurvich (Eds.), Visuapsychophysics. New York: Springer-Verlag.Google Scholar
  58. Krauskopf, J. (1973). Contributions of the primary chromatic mechanisms to the generation of visual evoked potentials. Vision Research, 13, 2289–2298.CrossRefGoogle Scholar
  59. Kurokawa, K., Decker, J.J., Kelly, P.L., and Snyder, H.L. (1988). The effects of image rotation on dot-matrix characters. In Proceedings of the Human Factors Society 32nd Annual Meeting (pp. 1391–1394 ). Santa Monica, CA: Human Factors Society.Google Scholar
  60. Land, E.H. (1974). The retinex theory of colour vision. Proceedings of the Royal Institute of Great Britain, 47, 23–57.Google Scholar
  61. Lewis, G.W., Trejo, L.J., Naitoh, P., Blankenship, M.H., and Inlow, M. (1989, August). Temporal variability of the neuromagnetic evoked field: Implications for human performance assessment (pp. 217–220 ). In S.S. Williamson, M. Hoke, G. Stroink, and M. Kotani (Eds.), Advances in biomagnetism. New York: Plenum.CrossRefGoogle Scholar
  62. Lewis, G.W., Trejo, L.J., Nunez, P., Weinberg, H., and Naitoh, P. (1987). Evoked neuromagnetic fields: Possible implications for indexing performance. In K. Atsumi, T. Katila, M. Kotani, S.J. Williamson and S. Ueno (Eds.), Biomagnetism 1987. Proceedings of the 6th International Conference on Biomagnetism. Tokyo, Japan.Google Scholar
  63. Lippert, T.M. (1986). Color difference prediction of legibility performance for raster CRT imagery. In SID Digest (pp. 86–89 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  64. Livingstone, M.S., and Hubel, D.H. (1983). Specificity of cortico-cortico connections in monkey visual system. Nature, 304, 531–534.CrossRefGoogle Scholar
  65. Livingstone, M.S., and Hubel, D.H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience, 4, 309–356.Google Scholar
  66. Lowenstein, O., and Loewenfeld, I.E. (1969). The pupil. In H. Dayson, (Ed.), The eye. Vol. 3. Muscular mechanisms. New York: Academic Press.Google Scholar
  67. MacAdam, D.L. (1937). Projective transformations of ICI color specifications. Journal of the Optical Society of America, 27, 294.CrossRefGoogle Scholar
  68. MacAdam, D.L. (1942). Visual sensitivities to color differences in daylight. Journal of the Optical Society of America, 32, 247–274.CrossRefGoogle Scholar
  69. MacLeod, D.I.A., and Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America, 69, 1183 1186.Google Scholar
  70. Marks, L.E., and Stevens, J.C. (1966) Individual brightness functions. Perception and Psychophysics, 1, 17–24.CrossRefGoogle Scholar
  71. Marrocco, R.T., McClurkin, J.W., and Young, R.A. (1982). Spatial summation and conduction latency classification of cells of the lateral geniculate nucleus of macaques. Journal of Neuroscience, 2, 1275–1291.Google Scholar
  72. Maunsell, J.H.R., and Newsome, W.T. (1987). Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience, 10, 363–401.CrossRefGoogle Scholar
  73. Michael, C.R. (1981). Columnar organization of color cells in monkey’s striate cortex. Journal of Neurophysiology, 46, 587–604.Google Scholar
  74. Murch, G.M. (1982). Visual accommodation and convergence to multichromatic information displays. In SID Digest (pp. 192–193 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  75. Nagy, A.L., Eskew, R.T., and Boynton, R.M. (1987). Analysis of color-matching ellipses in a cone-excitation space. Journal of the Optical Society of America A, 4, 756–768.CrossRefGoogle Scholar
  76. Nagy, A.L., and Sanchez, R.R. (1989). Interaction of color and luminance differences for optimal visual search. In SID Digest (pp. 296–299 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  77. Nunez, P.L. (1986a). Locating sources of the brain’s electric and magnetic fields: Some effects of inhomogeneity and multiple sources, with implications for the future (NPRDC Tech. Note 71–86–12). San Diego, CA: Navy Personnel Research and Development Center.Google Scholar
  78. Nunez, P.L. (1986b). The brain’s magnetic field: Some effects of multiple sources on localization methods. Electroencephalography and Clinical Neurophysiology, 63, 75–82.CrossRefGoogle Scholar
  79. Okada, Y.C. (1983). Neurogenesis of evoked magnetic fields. In S.J. Williamson, G.L. Romani, L. Kaufman and I. Modena (Eds.), Biomagnetism: An interdisciplinary approach. New York: Plenum.Google Scholar
  80. Okada, Y.C., Kaufman, L., Brenner, D., and Williamson, S.J. (1982). Modulation transfer function of the human visual system revealed by magnetic field measurements. Vision Research, 22, 319–333.CrossRefGoogle Scholar
  81. Padmos, P., and Van Norren, D. (1971). Cone spectral sensitivity and chromatic adaptation asGoogle Scholar
  82. revealed by human flicker-electroretinography. Vision Research, 11,27–42.Google Scholar
  83. Perry, N.W., and Childers, D.G. (1969). The human visual evoked response. Springfield, IL: Thomas.Google Scholar
  84. Perry, T.W., Childers, D.G., and Falgout, J.C. (1972). Chromatic specificity of the visual evoked response. Science, 177, 813–815.CrossRefGoogle Scholar
  85. Picton, T.W. (1988). Introduction. In T. W. Picton, (Ed.), Handbook of electroencephalography and clinical neurophysiology. Revised series. Vol. 3. Human event-related potentials. Amsterdam: Elsevier.Google Scholar
  86. Pokorny, J., and Smith, V.C. (1986). Colorimetry and color discrimination. In K.R. Boff, L. Kaufman and J.P. Thomas (Eds.), Handbook of perception and human performance. Volume 1: Sensory processes and perception. New York: Wiley.Google Scholar
  87. Post, D.L. (1984). CIELUV/CIELAB and self-luminous displays: Another perspective. Color Research and Application, 9, 244–245.CrossRefGoogle Scholar
  88. Post, D.L., Costanza, E.B., and Lippert, T.M. (1982). Expressions of color contrast as equivalent achromatic contrast. In Proceedings of the Human Factors Society 26th Annual Meeting (pp. 581–585 ). Santa Monica, CA: Human Factors Society.Google Scholar
  89. Post, D.L., and Calhoun, C.S. (1988). Color-name boundaries for equally bright stimuli on a CRT: Phase II. In SID Digest (pp. 65–68 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  90. Post, D.L., Lippert, T.M., and Snyder, H.L. (1983). Color contrast metrics for head-up displays. In Proceedings of the Human Factors Society 27th Annual Meeting (pp. 933937 ). Santa Monica, CA: Human Factors Society.Google Scholar
  91. Regan, D. (1970). Objective method of measuring the relative spectral luminosity curve in man. Journal of the Optical Society of America, 60, 856–859.CrossRefGoogle Scholar
  92. Regan, D. (1972). Evoked potentials to changes in the chromatic contrast and luminance contrast of checkerboard stimulus patterns. In G.B. Arden (Ed.), The Visual System, 8th International ISCERG Symposium. New York: Plenum.Google Scholar
  93. Regan, D. (1975). Recent advances in electrical recording from the human brain. Nature, 253, 401–407.CrossRefGoogle Scholar
  94. Regan, D. (1988). Human visual evoked potentials. In T.W. Picton, (Ed.), Handbook of electroencephalography and clinical neurophysiology. Revised series. Vol. 3. Human event-related potentials. Amsterdam: Elsevier.Google Scholar
  95. Richer, F., Barth, D.S., and Beatty, J. (1983). Neuromagnetic localization of the transient visual evoked response to patterned stimulation. Il Nuovo Cimento, 2, 420–428.CrossRefGoogle Scholar
  96. Riggs, L.A., and Sternheim, C.E. (1969). Human retinal and occipital potentials evoked by changes in the wavelength of the stimulating light. Journal of the Optical Society of America, 59, 635–640.CrossRefGoogle Scholar
  97. Rodieck, R.W. (1973). The vertebrate retina. San Francisco: W.H. Freeman and Company. Sagawa, K. (1982). Dichoptic color fusion studied with wavelength discrimination. Vision Research, 22, 945–952.Google Scholar
  98. Saini, V.D., and Cohen, G.H. (1979). Using color substitution pupil response to expose chromatic mechanisms. Journal of the Optical Society of America, 69, 1029–1035.CrossRefGoogle Scholar
  99. Sayer, J.R., Sebok, A.L., and Snyder, H.L. (1990). Color difference metrics: Task performance prediction for multichromatic CRT applications as determined by color legibility. In SID Digest (pp. 265–268 ). New York, NY: Palisades Institute for Research Services, Inc.CrossRefGoogle Scholar
  100. Schiller, P.H., and Malpeli, J.G. (1977). Properties and tectal projections of monkey retinal ganglion cells. Journal of Neurophysiology, 40, 428–445.Google Scholar
  101. Schiller, P.H., and Malpeli, J.G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology, 41, 788–797.Google Scholar
  102. Schober, H., and Wittman, K. (1938). Untersuchungen über die Sehschärfe bei verschieden farbigem Licht. Das Licht: Z praktische Leucht-u.Beleuchtungs-Aufgabe, 8, 199–201.Google Scholar
  103. Seiple, W.H., Kupersmith, M.J., Nelson, J.I., and Carr, R.E. (1984). The assessment of evoked potential contrast thresholds using real-time retrieval. Investigative Ophthalmology and Visual Science, 25, 627–631.Google Scholar
  104. Shipley, T., Jones, R.W., and Fry, A. (1965). Evoked visual potentials and human color vision. Science, 150, 1162–1164.CrossRefGoogle Scholar
  105. Shlaer, S., Smith, E.L., and Chase, A.M. (1942). Visual acuity and illumination in different spectral regions. Journal of General Physiology, 25, 553–569.CrossRefGoogle Scholar
  106. Siegfried, J.B., Tepas, D.I., Sperling, H.G., and Hiss, R.H. (1965). Evoked brain potential correlates of psychophysical responses: Heterochromatic flicker photometry. Science, 149, 321–323.CrossRefGoogle Scholar
  107. Shipley, T., Jones, R.W., and Fry, A. (1965). Evoked visual potentials and human color vision. Science, 150, 1162–1164.CrossRefGoogle Scholar
  108. Slooter, J.A., and van Norren, D. (1980). Visual acuity measured with pupil responses to checkerboard stimuli. Investigative Ophthalmology and Visual Science, 19, 105–108.Google Scholar
  109. Smith, S.L. (1962). Color coding and visual search. Journal of Experimental Psychology, 64, 434–440.CrossRefGoogle Scholar
  110. Smith, V.C., and Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research, 16, 161–171.CrossRefGoogle Scholar
  111. Snyder, H.L. (1984). Image quality: Measures and visual performance. In L.E. Tannas, Jr. (Ed.) Flat panel and CRT displays. New York: Van Nostrand.Google Scholar
  112. Snyder, H.L. (1987). Counterintuitive criteria for visual displays. In G. Salvendy, S.L. Sauter and J.J. Hurrell, Jr. (Eds.), Social, ergonomic and stress aspects of work with computers. New York: Elsevier.Google Scholar
  113. Snyder, H.L., and Taylor, G.B. (1979). The sensitivity of response measures of alphanumeric legibility to variations in dot matrix display parameters. Human Factors, 21, 457–471.Google Scholar
  114. Spekreijse, H., Van Der Tweel, L.H., and Zuidema, T. (1973). Contrast evoked responses in man. Vision Research, 13, 1577–1601.CrossRefGoogle Scholar
  115. Stevens, S.S. (1975). Psychophysics. New York: Wiley.Google Scholar
  116. Task, H.L. (1979). An evaluation and comparison of several measures of image quality for television displays (Tech. Report AMRL-TR-79–7). Wright-Patterson Air Force Base, OH: Aerospace Medical Research Laboratory.Google Scholar
  117. Thurstone, L.L. (1927). A law of comparative judgment. Psychological Review, 34, 273286.Google Scholar
  118. Torgerson, W.S. (1958). Theory and methods of scaling. New York: Wiley.Google Scholar
  119. Trejo, L.J., and Lewis, G.W. (1988). Sensitivity to hue differences measured by visual evoked potentials. In D. Eggleson (Ed.), First Navy Independent Research/Independent Exploratory Development Symposium (CPIA Publication 492 ). Laurel, MD: Chemical Propulsion Information Agency.Google Scholar
  120. Trejo, L J., and Lewis, G.W. (1989). Brain mechanisms for human color vision: Implications for display systems. In W.E. Montague (Ed.) IR/IED FY88 Annual Report (NPRDC Report AP-89–7). San Diego, CA: Navy Personnel Research and Development Center.Google Scholar
  121. Trejo, L.J., and Lewis, G.W. ( 1989, October). Individual differences in classification of transient, isoluminant, chromatic signals: A behavioral and electrophysiological analysis Paper presented at the Annual Meeting of the Optical Society of America, Orlando, Fl.Google Scholar
  122. Trejo, L.J., Lewis, G.W., and Blankenship, M.H. (1987). Brain activity during tactical decision-making: II. Probe-evoked potentials and workload (NPRDC Tech. Note 8812 ). San Diego, CA: Navy Personnel Research and Development Center.Google Scholar
  123. Trejo, L.J., Lewis, G.W., and Blankenship, M.H. (1990). Brain activity during decision-making: III. Relationships between probe-evoked potentials, simulation performance, and task performance (NPRDC Tech. Note 90–9 ). San Diego, CA: Navy Personnel Research and Development Center.Google Scholar
  124. Tyler, C.W., and Apkarian, P.A. (1985). Effects of contrast, orientation and binocularity in the pattern evoked potential. Vision Research, 25, 755–766.CrossRefGoogle Scholar
  125. Ueno, T., Pokorny, J., and Smith, V.C. (1985). Reaction times to chromatic stimuli. Vision Research, 25, 1623–1627.CrossRefGoogle Scholar
  126. Van Der Horst, G.J.C. (1969). Fourier analysis and color discrimination. Journal of the Optical Society of America, 59, 1670–1676.CrossRefGoogle Scholar
  127. Van Der Horst, G.J.C., and Bouman, M.A. (1969). Spatio-temporal chromaticity discrimination. Journal of the Optical Society of America, 59, 1482–1488.CrossRefGoogle Scholar
  128. Van Der Kraats, J., Smit, E.P., and Slooter, J.A. (1977). Objective measurements by the pupil balance method. Documenta Ophthalmologica Proceedings Series, 14, 213.Google Scholar
  129. Van Norren, D. (1972). Cone spectral sensitivity studied with an ERG method. In G.B. Arden (Ed.), The visual system. Neurophysiology, biophysics, and their clinical applications. New York: Plenum.Google Scholar
  130. Van Essen, D.C., and Maunsell, J.H.R. (1983). Hierarchical organization and functional streams in the visual cortex. Trends in Neurosciences, 6, 370–375.CrossRefGoogle Scholar
  131. Vos, J.J. (1978). Colorimetric and photometric properties of a 2° fundamental observer. Color Research and Application, 3, 125–128.CrossRefGoogle Scholar
  132. Vos, J.J., and Walraven, P.L. (1971). On the derivation of the foveal receptor primaries. Vision Research, 11, 799–818.CrossRefGoogle Scholar
  133. Wald, G. (1945). The spectral sensitivity of the human eye; a spectral adaptometer. Journal of the Optical Society of America, 35, 187.CrossRefGoogle Scholar
  134. Weinstein, G.W., Hobson, R.R., and Baker, F.H. (1971). Extracellular recordings from human retinal ganglion cells. Science, 171, 1021–1022.CrossRefGoogle Scholar
  135. White, C.T., Kataoka, R., and Martin, J.I. (1977). Colour evoked potentials: Development of a methodology for the analysis of the processes involved in colour vision. In J.E. Desmedt (Ed.), Visual evoked potentials in man: New developments. Oxford: Clarendon Press.Google Scholar
  136. Wiesel, T.N., and Hubel, D.H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology, 29, 1115–1156.Google Scholar
  137. Wright, K.D., and Pitt, F.H.G. (1934). Hue-discrimination in normal colour-vision. Proceedings of the Physical Society of London, 46, 459–473.CrossRefGoogle Scholar
  138. Wyszecki, G. (1986). Color appearance. In K.R. Boff, L. Kaufman and J.P. Thomas (Eds.), Handbook of perception and human performance. Volume I: Sensory processes and perception. New York: Wiley. Wyszecki, G., and Stiles, W.S. (1982). Color science. New York: Wiley.Google Scholar
  139. Young, R.S.L., and Alpern, M. (1980). Pupil responses to foveal exchange of monochromatic lights. Journal of the Optical Society of America, 70, 697–706.CrossRefGoogle Scholar
  140. Zeki, S. (1983). Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience, 9, 742–765.Google Scholar
  141. Zrenner, E. (1983). The spectral properties of the human visual system as revealed by visually evoked cortical potentials (VECP) and psychophysical investigations. In E. Zrenner (Ed.), Neurophysiological aspects of color vision in primates: Comparative studies on simian retinal ganglion cells and the human visual system, studies of brain function, volume 9, New York: Springer-Verlag.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Harry L. Snyder
    • 1
  • Leonard J. Trejo
    • 2
  1. 1.Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.U.S. Navy Personnel Research and Development CenterSan DiegoUSA

Personalised recommendations