Skip to main content

Color Basics for the Display Designer

  • Chapter
Color in Electronic Displays

Part of the book series: Defense Research Series ((DRSS,volume 3))

Abstract

Color provides a powerful tool for the display designer, but, like any tool, it may also be counterproductive when not used with the necessary skill. Anybody with some experience in this field knows how the indiscriminate use of too many and too vivid colors may wreck an otherwise good display design. Often the mistakes that are made could easily have been avoided, by just common sense and looking critically at the display. For example, it does not take an expert’s eye to see that a colored symbol, say a white cursor, that looks fine on a blue background, may become hardly noticeable when viewed against a bright yellow. However, common sense is not enough when not combined with some basic knowledge of the physics, physiology, and perception of color. This is particularly true when colors appear different from what one would expect on the basis of their stimulus specifications. Best known in this respect is the effect of chromatic induction, the change in color that results when a color is surrounded by another color. But this is only one of a variety of perceptual artifacts that may be encountered on a color display (Walraven, 1985a, 1985b)—not to mention the problem of defective color vision, a handicap that applies to about 8% of the potential users of color-coded displays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abney, W. (1910). On the changes in hue of spectrum colours by dilution with white light. Proceedings of the Royal Society (London), A 83, 120–124.

    Google Scholar 

  • Baylor, D.A., Nunn, B.S., and Schnapf, J.L. (1987). Spectral sensitivity of cones of the monkey Macaca fascicularis. Journal of Physiology, 390, 145–160

    Google Scholar 

  • Bodmann, H.W., Haubner, P., and Marsden, A.M. (1980). A unified relationship between brightness and luminance. In CIE Proceedings (pp. 99–102 ). Paris: Bureau Central de la CIE.

    Google Scholar 

  • Bouman, M.A., and Walraven, P.L. (1957). Some color-naming experiments of red and green monochromatic lights. Journal of the Optical Society of America, 47, 834–839.

    Google Scholar 

  • Boynton, R.M. (1978). Color in contour and object perception. In E.C. Carterette and M.P. Friedman (Eds.), Handbook of perception. New York, NY: Academic Press.

    Google Scholar 

  • Boynton, R.M. (1979). Human color vision. New York, NY: Holt, Rinehart and Winston. Brücke, E. (1878). Über einige Empfindungen im Gebiet der Sehnerven. Sitzungsberichte der Akademie der Wissenschaften Wien, 77, 39–71.

    Google Scholar 

  • Burkhardt, D.A., Gottesman, J., Kersten, D., and Legge, G.E. (1984). Symmetry and constancy in the perception of negative and positive luminance contrast. Journal of the Optical Society of America, A 1, 309–316.

    Google Scholar 

  • Burnham, R.W. (1953). Bezold’s color-mixture effect. American Journal of Psychology, 66, 377–385.

    Google Scholar 

  • Burns, S.A., Elsner, A.E., Pokorny, J., and Smith, V.C. (1984). The Abney effect: Chromaticity coordinates of unique and other constant hues. Vision Research, 24, 479–489.

    Google Scholar 

  • Burns, S.A., Smith, V.C., Pokorny, J., and Elsner, A.E. (1982). Brightness of equal-luminance lights. Journal of the Optical Society of America, 72, 1225–1231.

    Google Scholar 

  • Campbell, F.W. (1957). The depth of field of the human eye. Optica Acta, 4, 157–164.

    Google Scholar 

  • Campbell, F.W., and Durden, K. (1982). The visual display terminal issue; a consideration of its physiological, psychological and clinical background. Ophthalmic and Physiological Optics, 3, 175–192.

    Google Scholar 

  • Carter, E.C., and Carter, R.C. (1982). High-contrast sets of colors. Applied Optics, 21, 2936–2939.

    Google Scholar 

  • Carter, R.C., and Carter, E.C. (1983). CIE L*u*v* color-difference equations for self-luminous displays. Color Research and Application, 8, 252–253.

    Google Scholar 

  • CIE (1931). CIE Proceedings. Cambridge, England: Cambridge University Press (1932). CIE (1970). International lighting vocabulary (CIE Publication No. 17 ). Paris: Bureau Central de la CIE.

    Google Scholar 

  • CIE (1978). Light as a true visual quantity (CIE Publication No. 41 ). Paris: Bureau Central de la CIE.

    Google Scholar 

  • CIE (1987). International lighting vocabulary (CIE Publication No. 17. 4 ). Geneva: Bureau Central de la Commission Electrotechnique International.

    Google Scholar 

  • CIE (1988). Spectral luminous efficiency based upon brightness matching for monochromatic point sources 2° and 10° fields (CIE Publication No. 75 ). Vienna: Central Bureau of the CIE.

    Google Scholar 

  • Connors, M.M. (1968). Luminance requirements for hue identification in small targets. Journal of the Optical Society of America, 58, 258–263.

    Google Scholar 

  • Connors, M.M. (1970). Luminance requirements for hue perception and identification for a range of exposure durations. Journal of the Optical Society of America, 60, 958–965.

    Google Scholar 

  • Coren, S., and Keith, B. (1970). Bezold-Brücke effect: Pigment or neural locus? Journal of the Optical Society of America, 60, 559–562.

    Google Scholar 

  • DeMonasterio, F.M., McCrane, J.K., Newlander, J.K., and Schein, S.J. (1985). Density profile of blue-sensitive cones along the horizontal meridian of Macaque retina. Investigative Ophthalmology and Visual Science, 26, 289–302.

    Google Scholar 

  • Derefeldt, G., Hedin, C.E., and Sahlin, C. (1987). Transformation of NCS data into CIELUV color space. Displays, 8, 183–192.

    Google Scholar 

  • Derefeldt, G., and Hedin, C.E. (1989). Visualization of VDU colors by means of the CIELUV color space. Displays, 10, 134–146.

    Google Scholar 

  • Derefeldt, G., Hedin, C.E., and Sahlin, C. (1990). NCS colour space for VDU colours. Displays, 11, 8–29.

    Google Scholar 

  • DeValois, R.L. (1973). Central mechanisms of color vision. In R. Jung (Ed.), Handbook of sensory physiology, Vol. 7/3. Berlin: Springer-Verlag.

    Google Scholar 

  • Donohoo, D.T., and Snyder, L.M. (1985). Accommodation during color contrast. In SID

    Google Scholar 

  • Digest (pp. 200–203). New York, NY: Palisades Institute for Research Services, Inc. Einthoven, W. (1885). Stereoskopie durch Farbdifferenzen. Graefes Archiv der Ophtalmologie, 31,211–238.

    Google Scholar 

  • Eisner, A., and MacLeod, D.I.A. (1980). Blue cones do not contribute to luminance. Journal of the Optical Society of America, 70, 121–123.

    Google Scholar 

  • Evans, R.M. (1948). An introduction to color. New York, NY: Wiley.

    Google Scholar 

  • Fechner, G.T. (1860). Elemente der psychophysik. Leipzig: Breitel und Hartel.

    Google Scholar 

  • Gilchrist, A.L. (1979). The perception of surface whites and blacks. Scientific American, 24, 88–97.

    Google Scholar 

  • Gilchrist, A.L., Delman, S., and Jacobsen, A. (1983). The classification and integration of edges as critical to the perception of reflectance and illumination. Perception and Psychophysics, 33, 425–436.

    Google Scholar 

  • Gordon, J., and Abramov, I. (1977). Color vision in the peripheral retina. II. Hue and saturation. Journal of the Optical Society of America, 67, 202–207.

    Google Scholar 

  • Graham, C.M., and Brown, J.L. (1965). Color contrast and color appearance: brightness constancy and color constancy. In C.M. Graham (Ed.), Vision and visual perception New York, NY: Wiley.

    Google Scholar 

  • Guth, S.L., Massof, R.W., and Benzschawel, T. (1980). Vector model for normal and dichromatic vision. Journal of the Optical Society of America, 70, 197–212.

    Google Scholar 

  • Guth, S.L., and Lodge, H.R. (1973). Heterochromatic additivity, foveal spectral sensitivity, and a new color model. Journal of the Optical Society of America, 63, 450–462.

    Google Scholar 

  • Hard, A., and Sivik, L. (1981). NCS-Natural Color System: a Swedish standard for color notation. Color Research and Application, 6, 129–138.

    Google Scholar 

  • Harris, C.S., and Gibson, A.R. (1968). Is orientation-specific color adaptation in human vision due to edge detectors, afterimages, or “di-poles”? Science, 162, 1506–1507.

    Google Scholar 

  • Musing, M. (1976). Color coding of information on electronic displays. In Proceedings of the Sixth Congress of the International Ergonomics Association (pp. 210–217 ). Santa Monica, CA: Human Factors Society.

    Google Scholar 

  • Hepler, N. (1968). Color: a motion contingent after-effect. Science, 162, 376–377.

    Google Scholar 

  • Hering, E. (1964). Outlines of a theory of the light sense (L. Hurvich and D. Jameson Trans.). Boston, MA: Harvard University Press. ( Original work published 1878 )

    Google Scholar 

  • Hesselgren, S. (1984). Why color order systems? Color Research and Application, 9, 220–228.

    Google Scholar 

  • Hudson, P.T.W. (1984). Encoding information in displays: color vs. non-coloured methods and their uses, or, what can you do extra with a colour display? In C.P. Gibson (Ed.), Proceedings of a NATO Workshop on Colour Coded vs Monochrome Electronic Displays (pp. 34.1–34. 13 ). Farnborough, England: Royal Aircraft Establishment.

    Google Scholar 

  • Hunt, R.W.G. (1977). The specification of color appearance-I: Concept and terms. Color Research and Application, 2, 55–68.

    Google Scholar 

  • Hunt, R.W.G. (1985). Perceptual factors affecting color order systems. Color Research and Application, 10, 12–19.

    Google Scholar 

  • Hurvich, L.M., and Jameson, D. (1955). Some quantitative aspects of an opponent-colors theory-II: Brightness, saturation and hue in normal and dichromatic vision. Journal of the Optical Society of America, 45, 602–617.

    Google Scholar 

  • ISO (1987). Ergonomics of office VDUs: Visual requirements (Draft DP 9241, Part 3 ). Geneva: International Organization for Standardization.

    Google Scholar 

  • Jacobsen, A., and Gilchrist, A.L. (1988). The ratio principle holds over a million-to-one range of illumination. Perception and Psychophysics, 43, 1–6.

    Google Scholar 

  • Jameson, D., and Hurvich, L.M. (1972). Color adaptation: sensitivity, contrast, after-images. In D. Jameson and L.M. Hurvich (Eds.), Handbook of sensory physiology, Vol. VII/4 (pp. 568–581 ). Berlin: Springier.

    Google Scholar 

  • Judd, D.B. (1958). A new look at the measurement of light and color. Illuminating Engineering, 53, 61–71.

    Google Scholar 

  • Judd, D.B., and Wyszecki, G. (1963). Color in business, science and industry ( 2nd ed. ). New York, NY: Wiley.

    Google Scholar 

  • Kaiser, P.K. (1968). Color names of very small fields varying in duration and luminance. Journal of the Optical Society of America, 58, 849–852.

    Google Scholar 

  • Khan, J.A., Fitz, J., Psaltis, P., and Ide, C.H. (1984). Prolonged complementary chromatopsia in users of video display terminals. American Journal of Ophthalmology, 98, 756–761.

    Google Scholar 

  • Katz, D. (1935). The world of colour. (P. Kegan Trans.). London: Trench, Trubner and Co. (Original work published 1911 )

    Google Scholar 

  • Kelly, D.H. (1974). Spatio-temporal frequency characteristics of color vision mechanisms. Journal of the Optical Society of America, 64, 983–990.

    Google Scholar 

  • Kinney, J.A.S. (1979). The use of color in wide-angle displays. Proceedings of the Society for Information Display, 20, 33–40.

    Google Scholar 

  • Kinney, J.A.S. (1983). Brightness of colored self-luminous displays. Color Research and Application, 8, 82–89.

    Google Scholar 

  • Kurtenbach, W., Stemheim, C.E., and Spillmann, L. (1984). Change in hue of spectral colors by dilution with light (Abney effect). Journal of the Optical Society of America, 74, 365–372.

    Google Scholar 

  • Ladd, J.H., and Pinney, J.E. (1955). Empirical relationships with the Munsell value scale. Proceedings of the Institute of Radio Engineers, 43, 1137–1140.

    Google Scholar 

  • Land, E.H. (1964). The retinex. American Scientist, 52, 247–264.

    Google Scholar 

  • Laycock, J., and Viveash, J.P. (1982). Calculating the perceptibility of monochrome and color displays viewed under various illumination conditions. Displays, 3, 88–99.

    Google Scholar 

  • Lippert, T.M. (1986). Color-difference prediction of legibility performance for CRT raster imagery. In SID Digest (pp. 86–89 ). New York, NY: Palisades Institute for Research Services, Inc.

    Google Scholar 

  • Lippert, T.M., Farley, W.W., Post, D.L., and Snyder, H.L. (1983). Color contrast effects on visual performance. In SID Digest (pp. 170–171 ). New York, NY: Palisades Institute for Research Services, Inc.

    Google Scholar 

  • Livingstone, M.S., and Hubel, D. (1988). Segregation of form, color, movement and depth: anatomy, physiology and perception. Science, 240, 740–750.

    Google Scholar 

  • MacAdam, D.L. (1950). Loci of constant hue and brightness determined with various surrounding colors. Journal of the Optical Society of America, 40, 589–595.

    Google Scholar 

  • Maxwell, J.C. (1872). On colour vision. Proceedings of the Royal Institute of Great Britain, 6, 260.

    Google Scholar 

  • MacAdam, D.L. (Ed.), Sources of color science. Cambridge, MA: MIT Press, 1970 ).

    Google Scholar 

  • Mayhew, J.E.W., and Anstis, S.M. (1972). Movement after-effects contingent on color, intensity and pattern. Perception and Psychophysics, 12, 77–85.

    Google Scholar 

  • McCollough, C. (1965). Color adaptation of edge-detectors in the human visual system. Science, 149, 1115–1116.

    Google Scholar 

  • Mollon, J.D. (1977). The oddity of blue. Nature, 268, 587–588.

    Google Scholar 

  • Murch, G.M. (1983). Visual accommodation to multichromatic visual-display terminals. Proceedings of the Society for Information Display, 24, 67–71.

    Google Scholar 

  • Murch, G.M., Crawford, M., and McManus, P.A. (1984). Perceived brightness and color contrast of color displays. In C.P. Gibson (Ed.), Proceedings of a NATO Workshop on Colour Coded vs Monochrome Electronic Displays (pp. 37.1–37.6 ). Farnborough, England: Royal Aircraft Establishment.

    Google Scholar 

  • Newhall, S.M., Nickerson, D., and Judd, D.B. (1943). Final report of the OSA subcommittee on the spacing of the Munsell colors. Journal of the Optical Society of America, 33, 385–418.

    Google Scholar 

  • Phillips, P.L. (1986). Minimum color differences required to recognize small objects on a color CRT. Journal of the Institution of Electronic and Radio Engineers, 56, 123–129.

    Google Scholar 

  • Pitt, F.H.G. (1935). Characteristics of dichromatic vision (Medical Research Council of Great Britain Special Report Series, No. 200 ). London: HMSO.

    Google Scholar 

  • Pokorny, J., Smith, V.C., Yerriest, G., and Pinckers, A.J.L.G. (1979). Congenital and acquired color vision defects. New York, NY: Grune and Stratton.

    Google Scholar 

  • Post, D.L. (1983). Color contrast metrics for complex images. Doctoral dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  • Post, D.L. (1984). CIELUV/CIELAB and self-luminous displays: another perspective. Color Research and Application, 9, 244–245.

    Google Scholar 

  • Post, D.L., and Sheibenberger, D. (1984). Angular subtense requirements for colored CRT symbology. In Proceedings of the Human Factors Society 28th Annual Meeting (pp. 937–941 ). Santa Monica, CA: Human Factors Society.

    Google Scholar 

  • Purdy, D. McL. (1931). Spectral hue as a function of intensity. American Journal of Psychology, 43, 541–559.

    Google Scholar 

  • Purdy, D. McL. (1937). The Bezold-Brücke phenomenon and contours for constant hue. American Journal of Psychology, 49, 313–315.

    Google Scholar 

  • Rennilson, J.J. (1983). Problems in the perception of colored self-luminous displays. In Proceedings of the 20th session of the CIE (Amsterdam), D106/1. Paris: Bureau Central de la CIE.

    Google Scholar 

  • Richter, M. (1953). Das System der DIN-Farbenkarte. Farbe, 1, 85–89.

    Google Scholar 

  • Robertson, A.R. (1977). The CIE 1976 color difference formulae. Color Research and Application, 2, 7–11.

    Google Scholar 

  • Sayer, J.R., Sebok, A.L., and Snyder, H.L. (1990). Color-difference metrics: task performance prediction for multichromatic CRT applications as determined by color legibility. In SID Digest (pp. 265–268 ). New York, NY: Palisades Institute for Research Services, Inc.

    Google Scholar 

  • Schiller, P.H., Logothetis, N.K., and Charles, E.R. (1990). Functions of the color-opponent and broad-band channels of the visual system. Nature, 343, 68–70.

    Google Scholar 

  • Schuchard, R.A. (1990). Evaluation of uniform CRT display scales with visual threshold data. Applied Optics, 29, 570–578.

    Google Scholar 

  • Snyder, H.L. (1984). Effect of color contrast on legibility on airborne displays. In C.P. Gibson (Ed.), Proceedings of a NATO Workshop on Colour Coded vs Monochrome Electronic Displays (pp. 27.1–27. 19 ). Farnborough, England: Royal Aircraft Establishment.

    Google Scholar 

  • Spiker, V.A, Rogers, S.P., and Cicinelli, J. (1983). Identification of colored stimuli on a computer-generated raster display as a function of luminance, foreground color, background color, and stimulus size. Technical Report 459–6. Santa Barbara, CA: Anacapa Sciences, Inc.

    Google Scholar 

  • Sproson, W.N. (1983). Colour science in television and display systems. Bristol, England: Adam Hilger.

    Google Scholar 

  • Stevens, S.S. (1957). On the psychological law. Psychological Review, 64, 153–181.

    Google Scholar 

  • Stiles, W.S., and Crawford, B.H. (1933). The luminous efficiency of rays entering the eye at different points. Proceedings of the Royal Society, 112B, 428–450.

    Google Scholar 

  • Stromeyer, C.F. (1969). Further studies of the McCollough effect. Perception and Psychophysics, 6, 105–110.

    Google Scholar 

  • Taylor, S.P. (1983). A time induced tritan defect. Vision Research, 23, 745–748.

    Google Scholar 

  • Taylor, J.M., Murch, G.M., and McManus, P. (1989). TekHVC: A uniform perceptual color system for display users. Proceedings of the Society for Information Display, 30, 15–21.

    Google Scholar 

  • Trezona, P.W. (1973). The tetrachromatic colour match as a colorimetric technique. Vision Research, 13, 9–25

    Google Scholar 

  • Trezona, P.W. (1976). Aspects of peripheral colour vision. In E.B. Streif (Ed.), Modern problems in ophthalmology, Vol. 27 (pp. 52–70 ). Basel: S. Karger.

    Google Scholar 

  • Van Der Wildt, G.J., and Bouman, M.A. (1968). The dependence of the Bezold-Brücke hue shift on spatial intensity distribution. Vision Research, 8, 308–313.

    Google Scholar 

  • Van Norren, D., and Went, L.N. (1981). New test for the detection of tritan defects evaluated in two surveys. Vision Research, 21, 1303–1306.

    Google Scholar 

  • Verriest, G. (1971). Les courbes spectrales photopiques d’éfficacité dans les déficiences congénitales de la vision des couleurs. Vision Research, 11, 1407–1434.

    Google Scholar 

  • Verriest, G., Andrews, I., and Uvijls, A. (1985). Visual performance on a multicolor visual display unit of color-defective and normal trichromatic subjects (Technical Report TR 12. 241 ). Hursley, England: IBM.

    Google Scholar 

  • Viveash, J.P., and Laycock, J. (1983). Computation of the resultant chromaticity coordinates and luminance of combined and filtered sources in display design. Displays, 4, 17–23.

    Google Scholar 

  • Von Bezold, W. (1874). Die Farbenlehre. Braunschweig: Westerman.

    Google Scholar 

  • Von Grünau, M.W. (1975a). The “fluttering heart” and spatio-temporal characteristics of color processing-I: Reversibility and the influence of luminance. Vision Research, 15, 431–436.

    Google Scholar 

  • Von Grünau, M.W. (1975b). The “fluttering heart” and spatio-temporal characteristics of color processing-II: Lateral interactions across the chromatic border. Vision Research, 15, 437–440.

    Google Scholar 

  • Von Helmholtz, H. (1911). Handbuch der physiologischen Optik ( 3rd ed. ). Hamburg and Leipzig: Voss.

    Google Scholar 

  • Vos, J.J. (1960). Some new aspects of colour stereoscopy. Journal of the Optical Society of America, 50, 785–790.

    Google Scholar 

  • Vos, J.J. (1978). Colorimetric and photometric properties of a 2° fundamental observer. Color Research and Application, 3, 125–128.

    Google Scholar 

  • Vos, J.J. (1986). Are unique and invariant hues coupled? Vision Research, 26, 337.

    Google Scholar 

  • Vos, J.J., and Walraven, P.L. (1971). On the derivation of the foveal receptor primaries. Vision Research, 11, 799–818.

    Google Scholar 

  • Vos, J.J., Walraven, J., and Van Meeteren, A. (1976). Light profiles of the foveal image of a point source. Vision Research, 16, 215–219.

    Google Scholar 

  • Wagenaar, W.A. (1975). Stevens vs. Fechner: A plea for dismissal of the case. Acta Psychologica, 39, 225–235.

    Google Scholar 

  • Wagner, D.W. (1984). The effect of colored symbol aspect ratio on operator performance In C.P. Gibson (Ed.), Proceedings of a NATO Workshop on Colour Coded vs Monochrome Electronic Displays (pp. 30.1–30. 8 ). Farnborough, England: Royal Aircraft Establishment.

    Google Scholar 

  • Walraven, J. (1973). Spatial characteristics of chromatic induction; the segregation of lateral effects from straylight artifacts. Vision Research, 11, 1739–1753.

    Google Scholar 

  • Walraven, J. (1976). Discounting the background, the missing link in the explanation of chromatic induction. Vision Research, 16, 289–295.

    Google Scholar 

  • Walraven, J. (1977). Colour signals from incremental and decremental light stimuli. Vision Research, 17, 71–76.

    Google Scholar 

  • Walraven, J. (1981). Perceived colour under conditions of chromatic adaptation; evidence for gain control by it-mechanisms. Vision Research, 21, 611–620.

    Google Scholar 

  • Walraven, J. (1984). Color in displays-I: The psychophysical and physiological aspects. Report IZF 1985–11 (in Dutch). Soesterberg, The Netherlands: Institute for Perception TNO.

    Google Scholar 

  • Walraven, J. (1985a). The colours are not in the display: a survey of non-veridical perceptions that may turn up on a colour display. Displays, 6, 35–42.

    Google Scholar 

  • Walraven, J. (1985b). Perceptual problems in display imagery. In SID Digest (pp. 192–196 ). New York, NY: Palisades Institute for Research Services, Inc.

    Google Scholar 

  • Walraven, J. (1985c). Prolonged complementary chromatopsia in users of video display terminals. American Journal of Ophthalmology, 100, 350–352.

    Google Scholar 

  • Walraven, J. (1987a). Color coding for ATC display (EEC Report No. 212 ). Brussels, Belgium: Euro Control.

    Google Scholar 

  • Walraven, J. (1987b). Color coding of precipitation distribution on electronic weather maps Memo IZF 1987-M8 (in Dutch). Soesterberg, The Netherlands: Institute for Perception TNO.

    Google Scholar 

  • Walraven, J. (1990). Color specifications for electronic chart display systems (ECDIS) Report IZF 1990 A-19. Soesterberg, The Netherlands: Institute for Perception TNO.

    Google Scholar 

  • Walraven, J., Benzschawel, T., and Rogowitz, B.R. (1987). Color constancy interpretation of chromatic induction. In M. Richter (Ed., 1989), AIC Proceedings “StilesWyszecki Memorial Symposium on Color Vision Models” (pp. 269–273 ). Göttingen: Muster-Schmidt Verlag.

    Google Scholar 

  • Walraven, J., Benzschawel, T., and Rogowitz, B.R. (1989). Color constancy interpretation of chromatic induction. In M. Richter (Ed.), AIC Proceedings “Stiles-Wyszecki Memorial Symposium on Color Vision Models” (pp. 269–273 ). Göttingen: Muster-Schmidt Verlag.

    Google Scholar 

  • Walraven, J., Enroth-Cugell, C.H., Hood, D.C., MacLeod, D.I.A., and Schnapf, J.L. (1990). The control of visual sensitivity: Receptoral and post-receptoral processes. In L. Spillmann and J.S. Werner (Eds), Visual perception: the neurophysiological foundations (pp. 53–101 ). San Diego, CA: Academic Press.

    Google Scholar 

  • Walraven, J., and Lucassen, M.P. (1990). Color constancy in an RGB world. In Proceedings Eurodisplay ‘80 (pp. 112–115 ). Berlin: VDE Verlag.

    Google Scholar 

  • Walraven, J., and Werner, J.S. (1986). The invariance of unique white and its implications for normalizing cone action spectra. Perception, 15, A 27.

    Google Scholar 

  • Walraven, J., and Werner, J.S. (1991). The invariance of unique white: possible implications for normalizing cone action spectra. Vision Research (in press).

    Google Scholar 

  • Walraven, P.L. (1961a). On the mechanism of colour vision. Thesis, University of Utrecht, Utrecht, The Netherlands.

    Google Scholar 

  • Walraven, P.L. (1961b). On the Bezold-Brücke phenomenon. Journal of the Optical Society of America, 561, 1113–1116.

    Google Scholar 

  • Walraven, P.L., and Leebeek, H.J. (1964). Phase shift of sinusoidally alternating colored stimuli. Journal of the Optical Society of America, 54, 78–82.

    Google Scholar 

  • Werner, J.S., and Walraven, J. (1982). Effect of chromatic adaptation on the achromatic locus, the role of contrast, luminance and background color. Vision Research, 22, 929–943.

    Google Scholar 

  • Werner, J.S., and Wooten, B.R. (1979). Opponent chromatic mechanisms: Relation to photopigments and hue naming. Journal of the Optical Society of America, 69, 422–434.

    Google Scholar 

  • Wiesel, T.N., and Hubel, D.H. (1966). Spatial and chromatic integrations in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology, 29, 1115–1116.

    Google Scholar 

  • Willmer, E.N., and Wright, W.D. (1945). Colour sensitivity of the fovea centralis. Nature, 156, 119–121.

    Google Scholar 

  • Wright, W.D. (1952). The characteristics of tritanopia. Journal of the Optical Society of America, 42, 509–521.

    Google Scholar 

  • Wyszecki, G., and Stiles, W.S. (1982). Color science ( 2nd ed. ). New York, NY: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walraven, J. (1992). Color Basics for the Display Designer. In: Widdel, H., Post, D.L. (eds) Color in Electronic Displays. Defense Research Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9754-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9754-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9756-5

  • Online ISBN: 978-1-4757-9754-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics